논문 상세보기

한국미생물생명공학회> Journal of Microbiology and Biotechnology> Apigenin Increases Natural Killer Cytotoxicity to Human Hepatocellular Carcinoma Expressing HIF-1α through High Interaction of CD95/CD95L

KCI등재SCOUPUS

Apigenin Increases Natural Killer Cytotoxicity to Human Hepatocellular Carcinoma Expressing HIF-1α through High Interaction of CD95/CD95L

Hwan Hee Lee , Hyosun Cho
  • : 한국미생물생명공학회
  • : Journal of Microbiology and Biotechnology 32권4호
  • : 연속간행물
  • : 2022년 04월
  • : 397-404(8pages)
Journal of Microbiology and Biotechnology

DOI


목차

Introduction
Materials and Methods
Results
Discussion
Acknowledgments
Conflict of Interest
References

키워드 보기


초록 보기

Natural killer (NK) cell activity is more attenuated in hepatocellular carcinoma (HCC) patients than normal. Hypoxic-inducible factor (HIF)-1α is highly expressed in tumors to maintain their metabolism in a hypoxic environment. The expression of HIF-1α in cancers can lead to cell growth, proliferation, invasion/metastasis and immune escape. Although apigenin, a flavonoid, is known to have various biological activities, it has not been demonstrated in NK cell immune activity in HCC cells. In this study, NK-92 cells were directly cocultured with HCC SK-Hep1 cells for 24 h to evaluate NK cell activity in HCC cells or HCC cells expressing HIF-1α by apigenin. NK cell cytotoxicity to HCC cells expressing HIF-1α was significantly increased, and NK cell-activating receptors, NKG2D, NKp30 and NKp44 were highly expressed. The activating effect of apigenin on NK cells substantially induced apoptosis in HCC cells expressing HIF-1α through high expression of CD95L on the surface of NK-92 cells. Moreover, apigenin excellently inhibited the level of TGF-β1 in a coculture of NK cells and HCC cells. In conclusion, apigenin seems to be a good compound that increases NK cell cytotoxicity to HCC cells by controlling HIF-1α expression.

UCI(KEPA)

간행물정보

  • : 자연과학분야  > 생물
  • : KCI등재
  • : SCOPUS
  • : 월간
  • : 1017-7825
  • : 1738-8872
  • : 학술지
  • : 연속간행물
  • : 1991-2022
  • : 5834


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

32권5호(2022년 05월) 수록논문
최근 권호 논문
| | | |

KCI등재 SCOPUS

1A Review on Bioactive Compounds from Marine-Derived Chaetomium Species

저자 : Yuan Tian , Yanling Li

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 541-550 (10 pages)

다운로드

(기관인증 필요)

초록보기

Filamentous marine fungi have proven to be a plentiful source of new natural products. Chaetomium, a widely distributed fungal genus in the marine environment, has gained much interest within the scientific community. In the last 20 years, many potential secondary metabolites have been detected from marine-derived Chaetomium. In this review, we attempt to provide a comprehensive summary of the natural products produced by marine-derived Chaetomium species. A total of 122 secondary metabolites that were described from 2001 to 2021 are covered. The structural diversity of the compounds, along with details of the sources and relevant biological properties are also provided, while the relationships between structures and their bioactivities are discussed. It is our expectation that this review will be of benefit to drug development and innovation.

KCI등재 SCOPUS

2Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei

저자 : Doaa B. Darwesh , Yahya S. Al-awthan , Imadeldin Elfaki , Salem A. Habib , Tarig M. Alnour , Ahmed B. Darwish , Magdy M. Youssef

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 551-563 (13 pages)

다운로드

(기관인증 필요)

초록보기

L-asparaginase (E.C. 3.5.1.1) purified from bacterial cells is widely used in the food industry, as well as in the treatment of childhood acute lymphoblastic leukemia. In the present study, the Burkholderia pseudomallei L-asparaginase gene was cloned into the pGEX-2T DNA plasmid, expressed in E. coli BL21 (DE3) pLysS, and purified to homogeneity using Glutathione Sepharose chromatography with 7.26 purification fold and 16.01% recovery. The purified enzyme exhibited a molecular weight of ~33.6 kDa with SDS-PAGE and showed maximal activity at 50℃ and pH 8.0. It retained 95.1, 89.6%, and 70.2% initial activity after 60 min at 30℃, 40℃, and 50°C, respectively. The enzyme reserved its activity at 30℃ and 37℃ up to 24 h. The enzyme had optimum pH of 8 and reserved 50% activity up to 24 h. The recombinant enzyme showed the highest substrate specificity towards L-asparaginase substrate, while no detectable specificity was observed for L-glutamine, urea, and acrylamide at 10 mM concentration. THP-1, a human leukemia cell line, displayed significant morphological alterations after being treated with recombinant L-asparaginase and the IC50 of the purified enzyme was recorded as 0.8 IU. Furthermore, the purified recombinant Lasparaginase improved cytotoxicity in liver cancer HepG2 and breast cancer MCF-7 cell lines, with IC50 values of 1.53 and 18 IU, respectively.

KCI등재 SCOPUS

3Responses of Soil Rare and Abundant Sub- Communities and Physicochemical Properties after Application of Different Chinese Herb Residue Soil Amendments

저자 : Fan Chang , Fengan Jia , Min Guan , Qingan Jia , Yan Sun , Zhi Li

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 564-574 (11 pages)

다운로드

(기관인증 필요)

초록보기

Microbial diversity in the soil is responsive to changes in soil composition. However, the impact of soil amendments on the diversity and structure of rare and abundant sub-communities in agricultural systems is poorly understood. We investigated the effects of different Chinese herb residue (CHR) soil amendments and cropping systems on bacterial rare and abundant subcommunities. Our results showed that the bacterial diversity and structure of these subcommunities in soil had a specific distribution under the application of different soil amendments. The CHR soil amendments with high nitrogen and organic matter additives significantly increased the relative abundance and stability of rare taxa, which increased the structural and functional redundancy of soil bacterial communities. Rare and abundant sub-communities also showed different preferences in terms of bacterial community composition, as the former was enriched with Bacteroidetes while the latter had more Alphaproteobacteria and Betaproteobacteria. All applications of soil amendments significantly improved soil quality of newly created farmlands in whole maize cropping system. Rare sub-communitiy genera Niastella and Ohtaekwangia were enriched during the maize cropping process, and Nitrososphaera was enriched under the application of simple amendment group soil. Thus, Chinese medicine residue soil amendments with appropriate additives could affect soil rare and abundant sub-communities and enhance physicochemical properties. These findings suggest that applying soil composite amendments based on CHR in the field could improve soil microbial diversity, microbial redundancy, and soil fertility for sustainable agriculture on the Loess Plateau.

KCI등재 SCOPUS

4Caenimonas aquaedulcis sp. nov., Isolated from Freshwater of Daechung Reservoir during Microcystis Bloom

저자 : Ve Van Le , So-ra Ko , Sang-ah Lee , Mingyeong Kang , Hee-mock Oh , Chi-yong Ahn

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 575-581 (7 pages)

다운로드

(기관인증 필요)

초록보기

A Gram-stain-negative, white-coloured, and rod-shaped bacterium, strain DR4-4T, was isolated from Daechung Reservoir, Republic of Korea, during Microcystis bloom. Strain DR4-4T was most closely related to Caenimonas terrae SGM1-15T and Caenimonas koreensis EMB320T with 98.1% 16S rRNA gene sequence similarities. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain DR4-4T and closely related type strains were below 79.46% and 22.30%, respectively. The genomic DNA G+C content was 67.5%. The major cellular fatty acids (≥10% of the total) were identified as C16:0, cyclo C17:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Strain DR4-4T possessed phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol as the main polar lipids and Q-8 as the respiratory quinone. The polyamine profile was composed of putrescine, cadaverine, and spermidine. The results of polyphasic characterization indicated that the isolated strain DR4-4T represents a novel species within the genus Caenimonas, for which the name Caenimonas aquaedulcis sp. nov. is proposed. The type strain is DR4-4T (=KCTC 82470T =JCM 34453T).

KCI등재 SCOPUS

5Exogenous Bio-Based 2,3-Butanediols Enhanced Abiotic Stress Tolerance of Tomato and Turfgrass under Drought or Chilling Stress

저자 : Ae Ran Park , Jongmun Kim , Bora Kim , Areum Ha , Ji-yeon Son , Chan Woo Song , Hyohak Song , Jin-cheol Kim

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 582-593 (12 pages)

다운로드

(기관인증 필요)

초록보기

Among abiotic stresses in plants, drought and chilling stresses reduce the supply of moisture to plant tissues, inhibit photosynthesis, and severely reduce plant growth and yield. Thus, the application of water stress-tolerant agents can be a useful strategy to maintain plant growth under abiotic stresses. This study assessed the effect of exogenous bio-based 2,3-butanediol (BDO) application on drought and chilling response in tomato and turfgrass, and expression levels of several plant signaling pathway-related gene transcripts. Bio-based 2,3-BDOs were formulated to levo-2,3-BDO 0.9% soluble concentrate (levo 0.9% SL) and meso-2,3-BDO 9% SL (meso 9% SL). Under drought and chilling stress conditions, the application of levo 0.9% SL in creeping bentgrass and meso 9% SL in tomato plants significantly reduced the deleterious effects of abiotic stresses. Interestingly, pretreatment with levo-2,3-BDO in creeping bentgrass and meso-2,3-BDO in tomato plants enhanced JA and SA signaling pathway-related gene transcript expression levels in different ways. In addition, all tomato plants treated with acibenzolar-S-methyl (as a positive control) withered completely under chilling stress, whereas 2,3-BDO-treated tomato plants exhibited excellent cold tolerance. According to our findings, bio-based 2,3-BDO isomers as sustainable water stress-tolerant agents, levo- and meso-2,3-BDOs, could enhance tolerance to drought and/or chilling stresses in various plants through somewhat different molecular activities without any side effects.

KCI등재 SCOPUS

6Evaluation of the EtOAc Extract of Lemongrass (Cymbopogon citratus) as a Potential Skincare Cosmetic Material for Acne Vulgaris

저자 : Chowon Kim , Jumin Park , Hyeyoung Lee , Dae-youn Hwang , So Hae Park , Heeseob Lee

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 594-601 (8 pages)

다운로드

(기관인증 필요)

초록보기

This study evaluated the biological properties of lemongrass (Cymbopogon citratus) extracts. The EtOAc extract of lemongrass had DPPH, TEAC, and nitric oxide-scavenging activity assay results of 58.06, 44.14, and 41.08% at the concentration of 50, 10, and 50 μg/ml, respectively. The EtOAc extract had higher elastase and collagenase inhibitory activities than the 80% MeOH, n-hexane, BuOH, and water extracts and comparable whitening activity toward monophenolase or diphenolase. Also, the EtOAc fraction had higher lipase inhibitory and antimicrobial activities against Cutibacterium acnes among extracts which is known to an important contributor to the progression of inflammatory acne vulgaris, and an opportunistic pathogen present in human skin. Total phenolic and flavonoid concentrations in the EtOAc extract were 132.31 mg CAE/g extract and 104.50 mg NE/g extract, respectively. Biologically active compounds in lemongrass extracts were analyzed by LC-MS. This study confirms that lemongrass extracts have potential use as cosmetic skincare ingredients. Thus, lemongrass can be considered a promising natural source of readily available, low-cost extracts rich in antioxidant, skincare, and antimicrobial compounds that might be suitable for replacing synthetic compounds in the cosmeceutical industry.

KCI등재 SCOPUS

7Cooperative Interaction between Acid and Copper Resistance in Escherichia coli

저자 : Yeeun Kim , Seohyeon Lee , Kyungah Park , Hyunjin Yoon

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 602-611 (10 pages)

다운로드

(기관인증 필요)

초록보기

The persistence of pathogenic Escherichia coli under acidic conditions poses a serious risk to food safety, especially in acidic foods such as kimchi. To identify the bacterial factors required for acid resistance, transcriptomic analysis was conducted on an acid-resistant enterotoxigenic E. coli strain and the genes with significant changes in their expression under acidic pH were selected as putative resistance factors against acid stress. These genes included those associated with a glutamatedependent acid resistance (GDAR) system and copper resistance. E. coli strains lacking GadA, GadB, or YbaST, the components of the GDAR system, exhibited significantly attenuated growth and survival under acidic stress conditions. Accordantly, the inhibition of the GDAR system by 3- mercaptopropionic acid and aminooxyacetic acid abolished bacterial adaptation and survival under acidic conditions, indicating the indispensable role of a GDAR system in acid resistance. Intriguingly, the lack of cueR encoding a transcriptional regulator for copper resistance genes markedly impaired bacterial resistance to acid stress as well as copper. Conversely, the absence of YbaST severely compromised bacterial resistance against copper, suggesting an interplay between acid and copper resistance. These results suggest that a GDAR system can be a promising target for developing control measures to prevent E. coli resistance to acid and copper treatments.

KCI등재 SCOPUS

8Postbiotics Enhance NK Cell Activation in Stress-Induced Mice through Gut Microbiome Regulation

저자 : Ye-jin Jung , Hyun-seok Kim , Gunn Jaygal , Hye-rin Cho , Kyung Bae Lee , In-bong Song , Jong-hoon Kim , Mi-sun Kwak , Kyung-ho Han , Min-jung Bae , Moon-hee Sung

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 612-620 (9 pages)

다운로드

(기관인증 필요)

초록보기

Recent studies have revealed that probiotics and their metabolites are present under various conditions; however, the role of probiotic metabolites (i.e., postbiotics in pathological states) is controversial. Natural killer (NK) cells play a key role in innate and adaptive immunity. In this study, we examined NK cell activation influenced by a postbiotics mixture in response to gut microbiome modulation in stress-induced mice. In vivo activation of NK cells increased in the postbiotics mixture treatment group in accordance with Th1/Th2 expression level. Meanwhile, the Red Ginseng treatment group, a reference group, showed very little expression of NK cell activation. Moreover, the postbiotics mixture treatment group in particular changed the gut microbiome composition. Although the exact role of the postbiotics mixture in regulating the immune system of stressinduced mice remains unclear, the postbiotics mixture-induced NK cell activation might have affected gut microbiome modulation.

KCI등재 SCOPUS

9Effective Platform for the Production of Recombinant Outer Membrane Vesicles in Gram-Negative Bacteria

저자 : Anthicha Kunjantarachot , Teva Phanaksri

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 621-629 (9 pages)

다운로드

(기관인증 필요)

초록보기

Bacterial outer membrane vesicles (OMVs) typically contain multiple immunogenic molecules that include antigenic proteins, making them good candidates for vaccine development. In animal models, vaccination with OMVs has been shown to confer protective immune responses against many bacterial diseases. It is possible to genetically introduce heterologous protein antigens to the bacterial host that can then be produced and relocated to reside within the OMVs by means of the host secretion mechanisms. Accordingly, in this study we sought to develop a novel platform for recombinant OMV (rOMV) production in the widely used bacterial expression host species, Escherichia coli. Three different lipoprotein signal peptides including their Lol signals and tether sequences―from Neisseria meningitidis fHbp, Leptospira interrogans LipL32, and Campylobactor jejuni JlpA―were combined upstream to the GFPmut2 model protein, resulting in three recombinant plasmids. Pilot expression studies showed that the fusion between fHbp and GFPmut2 was the only promising construct; therefore, we used this construct for large-scale expression. After inducing recombinant protein expression, the nanovesicles were harvested from cell-free culture media by ultrafiltration and ultracentrifugation. Transmission electron microscopy demonstrated that the obtained rOMVs were closed, circular single-membrane particles, 20-200 nm in size. Western blotting confirmed the presence of GFPmut2 in the isolated vesicles. Collectively, although this is a non-optimized, proof-of-concept study, it demonstrates the feasibility of this platform in directing target proteins into the vesicles for OMV-based vaccine development.

KCI등재 SCOPUS

10Optimization of an Industrial Medium and Culture Conditions for Probiotic Weissella cibaria JW15 Biomass Using the Plackett- Burman Design and Response Surface Methodology

저자 : Hyung-seok Yu , Na-kyoung Lee , Won-ju Kim , Do-un Lee , Jong-ha Kim , Hyun-dong Paik

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 5호 발행 연도 : 2022 페이지 : pp. 630-637 (8 pages)

다운로드

(기관인증 필요)

초록보기

The objective of this study was to optimize industrial-grade media for improving the biomass production of Weissella cibaria JW15 (JW15) using a statistical approach. Eleven variables comprising three carbon sources (glucose, fructose, and sucrose), three nitrogen sources (protease peptone, yeast extract, and soy peptone), and five mineral sources (K2HPO4, potassium citrate, Lcysteine phosphate, MgSO4, and MnSO4) were screened by using the Plackett-Burman design. Consequently, glucose, sucrose, and soy peptone were used as significant variables in response surface methodology (RSM). The composition of the optimal medium (OM) was 22.35 g/l glucose, 15.57 g/l sucrose, and 10.05 g/l soy peptone, 2.0 g/l K2HPO4, 5.0 g/l sodium acetate, 0.1 g/l MgSO4·7H2O, 0.05 g/l MnSO4·H2O, and 1.0 g/l Tween 80. The OM significantly improved the biomass production of JW15 over an established commercial medium (MRS). After fermenting OM, the dry cell weight of JW15 was 4.89 g/l, which was comparable to the predicted value (4.77 g/l), and 1.67 times higher than that of the MRS medium (3.02 g/l). Correspondingly, JW15 showed a rapid and increased production of lactic and acetic acid in the OM. To perform a scale-up validation, batch fermentation was executed in a 5-l bioreactor at 37℃ with or without a pH control at 6.0 ± 0.1. The biomass production of JW15 significantly improved (1.98 times higher) under the pH control, and the cost of OM was reduced by two-thirds compared to that in the MRS medium. In conclusion, OM may be utilized for mass producing JW15 for industrial use.

12
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재SCOUPUS

1Apigenin Increases Natural Killer Cytotoxicity to Human Hepatocellular Carcinoma Expressing HIF-1α through High Interaction of CD95/CD95L

저자 : Hwan Hee Lee , Hyosun Cho

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 397-404 (8 pages)

다운로드

(기관인증 필요)

초록보기

Natural killer (NK) cell activity is more attenuated in hepatocellular carcinoma (HCC) patients than normal. Hypoxic-inducible factor (HIF)-1α is highly expressed in tumors to maintain their metabolism in a hypoxic environment. The expression of HIF-1α in cancers can lead to cell growth, proliferation, invasion/metastasis and immune escape. Although apigenin, a flavonoid, is known to have various biological activities, it has not been demonstrated in NK cell immune activity in HCC cells. In this study, NK-92 cells were directly cocultured with HCC SK-Hep1 cells for 24 h to evaluate NK cell activity in HCC cells or HCC cells expressing HIF-1α by apigenin. NK cell cytotoxicity to HCC cells expressing HIF-1α was significantly increased, and NK cell-activating receptors, NKG2D, NKp30 and NKp44 were highly expressed. The activating effect of apigenin on NK cells substantially induced apoptosis in HCC cells expressing HIF-1α through high expression of CD95L on the surface of NK-92 cells. Moreover, apigenin excellently inhibited the level of TGF-β1 in a coculture of NK cells and HCC cells. In conclusion, apigenin seems to be a good compound that increases NK cell cytotoxicity to HCC cells by controlling HIF-1α expression.

KCI등재SCOUPUS

2Simotang Alleviates the Gastrointestinal Side Effects of Chemotherapy by Altering Gut Microbiota

저자 : Lijing Deng , Xingyi Zhou , Zhifang Lan , Kairui Tang , Xiaoxu Zhu , Xiaowei Mo , Zongyao Zhao , Zhiqiang Zhao , Mansi Wu

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 405-418 (14 pages)

다운로드

(기관인증 필요)

초록보기

Simotang oral liquid (SMT) is a traditional Chinese medicine (TCM) consisting of four natural plants and is used to alleviate gastrointestinal side effects after chemotherapy and functional dyspepsia (FD). However, the mechanism by which SMT helps cure these gastrointestinal diseases is still unknown. Here, we discovered that SMT could alleviate gastrointestinal side effects after chemotherapy by altering gut microbiota. C57BL/6J mice were treated with cisplatin (DDP) and SMT, and biological samples were collected. Pathological changes in the small intestine were observed, and the intestinal injury score was assessed. The expression levels of the inflammatory factors IL-1β and IL-6 and the adhesive factors Occludin and ZO-1 in mouse blood or small intestine tissue were also detected. Moreover, the gut microbiota was analyzed by high-throughput sequencing of 16S rRNA amplicons. SMT was found to effectively reduce gastrointestinal mucositis after DDP injection, which lowered inflammation and tightened the intestinal epithelial cells. Gut microbiota analysis showed that the abundance of the anti-inflammatory microbiota was downregulated and that the inflammatory microbiota was upregulated in DDP-treated mice. SMT upregulated antiinflammatory and anticancer microbiota abundance, while the inflammatory microbiota was downregulated. An antibiotic cocktail (ABX) was also used to delete mice gut microbiota to test the importance of gut microbiota, and we found that SMT could not alleviate gastrointestinal mucositis after DDP injection, showing that gut microbiota might be an important mediator of SMT treatment. Our study provides evidence that SMT might moderate gastrointestinal mucositis after chemotherapy by altering gut microbiota.

KCI등재SCOUPUS

3Effects of American Ginseng Cultivation on Bacterial Community Structure and Responses of Soil Nutrients in Different Ecological Niches

저자 : Fan Chang , Fengan Jia , Rui Lv , Min Guan , Qingan Jia , Yan Sun , Zhi Li

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 419-429 (11 pages)

다운로드

(기관인증 필요)

초록보기

American ginseng (Panax quinquefolium L.) is a perennial herbaceous plant widely cultivated in China, Korea, the United States, and Japan due to its multifunctional properties. In northwest China, transplanting after 2-3 years has become the main mode of artificial cultivation of American ginseng. However, the effects of the cultivation process on the chemical properties of the soil and bacterial community remain poorly understood. Hence, in the present study, high-throughput sequencing and soil chemical analyses were applied to investigate the differences between bacterial communities and nutrition driver factors in the soil during the cultivation of American ginseng. The responses of soil nutrition in different ecological niches were also determined with the results indicating that the cultivation of American ginseng significantly increased the soluble nutrients in the soil. Moreover, the bacterial diversity fluctuated with cultivation years, and 4-year-old ginseng roots had low bacterial diversity and evenness. In the first two years of cultivation, the bacterial community was more sensitive to soil nutrition compared to the last two years. Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Firmicutes, and Bacteroidetes dominated the bacterial community regardless of the cultivation year and ecological niche. With the increase of cultivation years, the assembly of bacterial communities changed from stochastic to deterministic processes. The high abundance of Sphingobium, Novosphingobium, and Rhizorhabdus enriched in 4-years-old ginseng roots was mainly associated with variations in the available potassium (AK), total phosphorus (TP), total potassium (TK), and organic matter (OM).

KCI등재SCOUPUS

4Production of Deglucose-Apiose-Xylosylated Platycosides from Glycosylated Platycosides by Crude Enzyme from Aspergillus tubingensis

저자 : Kyung-chul Shin , Tae-geun Kil , Su-hwan Kang , Deok-kun Oh

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 430-436 (7 pages)

다운로드

(기관인증 필요)

초록보기

CPlatycosides, Platycodi radix (Platycodon grandiflorus root) saponins, are used as food supplements and exert diverse pharmacological activities. Deglycosylation of saponins enhances their biological efficacy, and deglycosylated platycosides are produced mainly through enzymatic hydrolysis. However, the types of available deglycosylated platycosides remain limited because of a lack of hydrolyzing enzymes that can act on specific glycosides in glycosylated platycosides. In this study, a crude enzyme from Aspergillus tubingensis converted platycoside E (PE) and polygalacin D3 (PGD3) into deglucose-apiose-xylosylated (deGAX)-platycodin D (PD) and deGAX-polygalacin D (PGD), respectively. The products were identified through LC/MS analysis by specifically hydrolyzing all glucose residues at C-3, and apiose and xylose residues at C-28 of platycoside. The hydrolytic activity of the crude enzyme obtained after the cultivation of the fungus using citrus pectin and corn steep solid as carbon and nitrogen sources, respectively, in culture medium was increased compared with those using other carbon and nitrogen sources. The crude enzyme from A. tubingensis was the most effective in producing deGAX platycoside at pH 5.0 and 60℃. The crude enzyme produced 0.32 mg/ml deGAX-PD and 0.34 mg/ml deGAX-PGD from 1 mg/ml PE and 1 mg/ml PGD3 (at pH 5.0 and 60℃) for 12 and 10 h, with productivities of 32.0 and 42.5 mg/l/h and molar yields of 62.1 and 59.6%, respectively. To the best of our knowledge, this is the first study to produce deGAX platycosides from glycosylated platycosides.

KCI등재SCOUPUS

5Icaritin Preparation from Icariin by a Special Epimedium Flavonoid-Glycosidase from Aspergillus sp.y848 Strain

저자 : Zhenghao Wang , Chunying Liu , Hongshan Yu , Bo Wu , Baoyu Huai , Ziyu Zhuang , Changkai Sun , Longquan Xu , Fengxie Jin

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 437-446 (10 pages)

다운로드

(기관인증 필요)

초록보기

In this study, to obtain icaritin with high pharmacological activities from icariin, which has a content ratio of over 58% in the total flavonoids of Epimedium herb, a special Epimedium flavonoid-glycosidase was produced, purified and characterized from Aspergillus sp.y848 strain. The optimal enzyme production was gained in a medium containing 5% (w/v) wheat bran extract and 0.7% (w/v) Epimedium leaf powder as the enzyme inducer, and strain culture at 30℃ for 6-7 days. The molecular weight of the enzyme was approximately 73.2 kDa; the optimal pH and temperature were 5.0 and 40°C. The enzyme Km and Vmax values for icariin were 15.63 mM and 55.56 mM/h. Moreover, the enzyme hydrolyzed the 7-O-glucosides of icariin into icariside II, and finally hydrolyzed 3-Orhamnoside of icariside II into icaritin. The enzyme also hydrolyzed 7-O-glucosides of epimedin B to sagittatoside B, and then further hydrolyzed terminal 3-O-xyloside of sagittatoside B to icarisiede II, before finally hydrolyzing 3-O-rhamnoside of icarisiede II into icaritin. The enzyme only hydrolyzed 7-O-glucoside of epimedin A or epimedin C into sagittatoside A or sagittatoside C. It is possible to prepare icaritin from the high-content icariin in Epimedium herb using this enzyme. When 2.5% icariin was reacted at 40℃ for 18-20 h by the low-cost crude enzyme, 5.04 g icaritin with 98% purity was obtained from 10 g icariin. Also, the icaritin molar yield was 92.5%. Our results showed icaritin was successfully produced via cost-effective and relatively simple methods from icariin by crude enzyme. Our results should be very useful for the development of medicines from Epimedium herb.

KCI등재SCOUPUS

6Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by Dictyoglomus thermophilum β-xylosidase Xln-DT

저자 : Qi Li , Lei Wang , Xianying Fang , Linguo Zhao

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 447-457 (11 pages)

다운로드

(기관인증 필요)

초록보기

Notoginsenoside R1 and ginsenoside Rg1 are the main active ingredients of Panax notoginseng, exhibiting anti-fatigue, anti-tumor, anti-inflammatory, and other activities. In a previous study, a GH39 β-xylosidase Xln-DT was responsible for the bioconversion of saponin, a natural active substance with a xylose group, with high selectivity for cleaving the outer xylose moiety of notoginsenoside R1 at the C-6 position, producing ginsenoside Rg1 with potent anti-fatigue activity. The optimal bioconversion temperature, pH, and enzyme dosage were obtained by optimizing the transformation conditions. Under optimal conditions (pH 6.0, 75℃, enzyme dosage 1.0 U/ml), 1.0 g/l of notoginsenoside R1 was converted into 0.86 g/l of ginsenoside Rg1 within 30 min, with a molar conversion rate of approximately 100%. Furthermore, the in vivo anti-fatigue activity of notoginsenoside R1 and ginsenoside Rg1 were compared using a suitable rat model. Compared with the control group, the forced swimming time to exhaustion was prolonged in mice by 17.3% in the Rg1 high group (20 mg/kg·d). Additionally, the levels of hepatic glycogen (69.9-83.3% increase) and muscle glycogen (36.9-93.6% increase) were increased. In the Rg1 group, hemoglobin levels were also distinctly increased by treatment concentrations. Our findings indicate that treatment with ginsenoside Rg1 enhances the anti-fatigue effects. In this study, we reveal a GH39 β-xylosidase displaying excellent hydrolytic activity to produce ginsenoside Rg1 in the pharmaceutical and food industries.

KCI등재SCOUPUS

7Safety and Technological Characterization of Staphylococcus xylosus and Staphylococcus pseudoxylosus Isolates from Fermented Soybean Foods of Korea

저자 : Haram Kong , Do-won Jeong , Namwon Kim , Sugyeong Lee , Sooyoung Sul , Jong-hoon Lee

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 458-463 (6 pages)

다운로드

(기관인증 필요)

초록보기

We evaluated the antibiotic susceptibilities, hemolytic activities, and technological properties of 36 Staphylococcus xylosus strains and 49 S. pseudoxylosus strains predominantly isolated from fermented soybean foods from Korea. Most of the strains were sensitive to chloramphenicol, erythromycin, gentamycin, kanamycin, lincomycin, oxacillin, tetracycline, and trimethoprim. However, 23 strains exhibited potential phenotypic acquired resistance to erythromycin, lincomycin, and tetracycline. Based on breakpoint values for staphylococci from the Clinical and Laboratory Standards Institute, >30% of the isolates were resistant to ampicillin and penicillin G, but the population distributions in minimum inhibitory concentration tests were clearly different from those expected for acquired resistance. None of the strains exhibited clear α- or β-hemolytic activity. S. xylosus and S. pseudoxylosus exhibited salt tolerance on agar medium containing 20% and 22% (w/v) NaCl, respectively. S. xylosus and S. pseudoxylosus strains possessed protease and lipase activities, which were affected by the NaCl concentration. Protease activity of S. pseudoxylosus was strain-specific, but lipase activity might be a characteristic of both species. This study confirms the potential of both species for use in high-salt soybean fermentation, but the safety and technological properties of strains must be determined to select suitable starter candidates.

KCI등재SCOUPUS

8A Novel Endo-Polygalacturonase from Penicillium oxalicum: Gene Cloning, Heterologous Expression and Its Use in Acidic Fruit Juice Extraction

저자 : Bo Lu , Liang Xian , Jing Zhu , Yunyi Wei , Chengwei Yang , Zhong Cheng

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 464-472 (9 pages)

다운로드

(기관인증 필요)

초록보기

An endo-polygalacturonase (endo-PGase) exhibiting excellent performance during acidic fruit juice production would be highly attractive to the fruit juice industry. However, candidate endo-PGases for this purpose have rarely been reported. In this study, we expressed a gene from Penicillium oxalicum in Pichia pastoris. The recombinant enzyme PoxaEnPG28C had an optimal enzyme activity at pH 4.5 and 45℃ and was stable at pH 3.0-6.5 and < 45℃. The enzyme had a specific activity of 4,377.65 ± 55.37 U/mg towards polygalacturonic acid, and the Km and Vmax values of PoxaEnPG28C were calculated as 1.64 g/l and 6127.45 U/mg, respectively. PoxaEnPG28C increased the light transmittance of orange, lemon, strawberry and hawthorn juice by 13.9 ± 0.3%, 29.4 ± 3.8%, 95.7 ± 10.2% and 79.8 ± 1.7%, respectively; it reduced the viscosity of the same juices by 25.7 ± 1.6%, 52.0 ± 4.5%, 48.2 ± 0.7% and 80.5 ± 2.3%, respectively, and it increased the yield of the juices by 24.5 ± 0.7%, 12.7 ± 2.2%, 48.5 ± 4.2% and 104.5 ± 6.4%, respectively. Thus, PoxaEnPG28C could be considered an excellent candidate enzyme for acidic fruit juice production. Remarkably, fruit juice production using hawthorn as an material was reported for the first time.

KCI등재SCOUPUS

9LAB Fermentation Improves Production of Bioactive Compounds and Antioxidant Activity of Withania somnifera Extract and Its Metabolic Signatures as Revealed by LC-MS/MS

저자 : Jinhui Yu , Yun Geng , Han Xia , Deyuan Ma , Chao Liu , Rina Wu , Junrui Wu , Shengbo You , Yuping Bi

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 473-483 (11 pages)

다운로드

(기관인증 필요)

초록보기

In this study we investigated the effect of lactic acid bacteria (LAB) fermentation on the ingredients and anti-oxidant activity of Withania somnifera extract. Four strains of LAB could proliferate normally in medium containing W. somnifera extract after the pH reached 3.1~3.5. LAB fermentation increased the content of alcohols and ketones, endowing the extract with the characteristic aroma of fermentation. Compared to the control, the DPPH and ABTS free radical scavenging rates in the fermented samples were significantly improved, ranging from 48.5% to 59.6% and 1.2% to 6.4%. The content of total phenols was significantly increased by 36.1% during the fermentation of mixed bacteria. Moreover, the original composition spectrum of the extract was significantly changed while the differentially accumulated metabolites (DAMs) were closely related to bile secretion, tryptophan metabolism and purine metabolism. Therefore, LAB fermentation can be used as a promising way to improve the flavor and bioactivity of the extracts of W. somnifera, making the ferments more attractive for use as functional food.

KCI등재SCOUPUS

10Characterization of a Thermostable Lichenase from Bacillus subtilis B110 and Its Effects on β-Glucan Hydrolysis

저자 : Zhen Huang , Guorong Ni , Fei Wang , Xiaoyan Zhao , Yunda Chen , Lixia Zhang , Mingren Qu

발행기관 : 한국미생물생명공학회 간행물 : Journal of Microbiology and Biotechnology 32권 4호 발행 연도 : 2022 페이지 : pp. 484-492 (9 pages)

다운로드

(기관인증 필요)

초록보기

Lichenase is an enzyme mainly implicated in the degradation of polysaccharides in the cell walls of grains. Emerging evidence shows that a highly efficient expression of a thermostable recombinant lichenase holds considerable promise for application in the beer-brewing and animal feed industries. Herein, we cloned a lichenase gene (CelA203) from Bacillus subtilis B110 and expressed it in E. coli. This gene contains an ORF of 729 bp, encoding a protein with 242 amino acids and a calculated molecular mass of 27.3 kDa. According to the zymogram results, purified CelA203 existed in two forms, a monomer, and a tetramer, but only the tetramer had potent enzymatic activity. CelA203 remained stable over a broad pH and temperature range and retained 40% activity at 70℃ for 1 h. The Km and Vmax of CelA203 towards barley β-glucan and lichenan were 3.98 mg/ml, 1017.17 U/mg, and 2.78 mg/ml, 198.24 U/mg, respectively. Furthermore, trisaccharide and tetrasaccharide were the main products obtained from CelA203-mediated hydrolysis of deactivated oat bran. These findings demonstrate a promising role for CelA203 in the production of oligosaccharides in animal feed and brewing industries.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기