논문 상세보기

한국정보처리학회> 정보처리학회논문지. 소프트웨어 및 데이터 공학> 에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법

KCI등재

에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법

A Resource Management Scheme Based on Live Migrations for Mobility Support in Edge-Based Fog Computing Environments

임종범 ( Jongbeom Lim )
  • : 한국정보처리학회
  • : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권4호
  • : 연속간행물
  • : 2022년 04월
  • : 163-168(6pages)
정보처리학회논문지. 소프트웨어 및 데이터 공학

DOI


목차

1. 서 론
2. 연구의 배경 및 동기
3. 제안하는 자원 관리 알고리즘
4. 실험 평가
5. 결 론
References

키워드 보기


초록 보기

클라우드 컴퓨팅과 사물인터넷의 대중화에 따라 사물인터넷 컴퓨팅 환경에 존재하는 인터넷 연결이 가능한 장치들의 수가 점차 증가하고 있다. 또한 스마트홈, 헬스케어 등 사물인터넷을 이용한 다양한 인터넷 응용이 많아짐에 따라 통신 지연 및 연산의 신뢰성과 같은 지표의 서비스품질과 관련된 연구들이 진행되고 있다. 사물인터넷 응용의 서비스품질 향상을 위해 중앙집중형 클라우드 서버에 연결하기 보다 장치와 가까이 존재하고 중앙집중형 클라우드 서버와의 오프로드(offload) 협업을 위해 에지 컴퓨팅(edge computing)이 결함된 클라우드-포그 컴퓨팅 환경이 주목을 받고 있다. 하지만 클라우드-포그 컴퓨팅 환경에서 장치들이 이동성을 특성을 가질 때 사물인터넷 응용 서비스의 연속성이 떨어지고 서비스품질 수준이 저하되는 문제점이 발생하고 있다. 이 논문에서는 에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법을 제안한다. 제안하는 자원 관리 알고리즘은 사용자의 이동성 방향과 속도를 기반으로 일정 시간 뒤의 위치를 예측하고 이를 기반으로 라이브 마이그레이션을 통해 사물인터넷 서비스 이주를 지원한다. 성능 평가를 통해 제안하는 자원 관리 알고리즘의 효용성을 측정하였으며, 성능 실험에서 정지시간(downtime)과 서비스 작업의 신뢰성이 크게 향상됨을 보였다.
As cloud computing and the Internet of things are getting popular, the number of devices in the Internet of things computing environments is increasing. In addition, there exist various Internet-based applications, such as home automation and healthcare. In turn, existing studies explored the quality of service, such as downtime and reliability of tasks for Internet of things applications. To enhance the quality of service of Internet of things applications, cloud-fog computing (combining cloud computing and edge computing) can be used for offloading burdens from the central cloud server to edge servers. However, when devices inherit the mobility property, continuity and the quality of service of Internet of things applications can be reduced. In this paper, we propose a resource management scheme based on live migrations for mobility support in edge-based fog computing environments. The proposed resource management algorithm is based on the mobility direction and pace to predict the expected position, and migrates tasks to the target edge server. The performance results show that our proposed resource management algorithm improves the reliability of tasks and reduces downtime of services.

UCI(KEPA)

간행물정보

  • : 공학분야  > 전자공학
  • : KCI등재
  • :
  • : 월간
  • : 2287-5905
  • : 2734-0503
  • : 학술지
  • : 연속간행물
  • : 2012-2022
  • : 698


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

11권5호(2022년 05월) 수록논문
최근 권호 논문
| | | |

KCI등재

1빅데이터 전처리 기반의 실시간 사용자 선호 데이터 추천을 위한 개선된 스카이라인 질의 기법

저자 : 김지현 ( Jihyun Kim ) , 김종완 ( Jongwan Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 5호 발행 연도 : 2022 페이지 : pp. 189-196 (8 pages)

다운로드

(기관인증 필요)

초록보기

스카이라인 질의(Skyline Query)는 객체의 다중 속성을 기준으로 사용자 선호에 적합한 대상을 탐색하는 기법이다. 기존 스카이라인 질의는 탐색 결과를 일괄처리(batch processing)로 반환하지만, 대화형 앱이나 모바일 환경의 등장으로 실시간 탐색 결과의 필요성이 증가하였다. 스카이라인을 위한 온라인 알고리즘(online algorithm)은 객체의 반환 속도를 향상해 실시간으로 선호 객체를 제공한다. 하지만 객체 탐색 과정에서 기존에 탐색한 영역을 재방문하여 반복 비교하는 불필요한 연산 시간이 소요된다. 본 논문은 온라인 알고리즘에서 불필요한 탐색 시간을 제거하여 스카이라인 질의 결과를 실시간으로 제공하기 위한 스카이라인 온라인 전처리 알고리즘을 제안한다. 제안 기법은 기존의 온라인 알고리즘에서 전처리를 수행함으로써 반복적으로 재탐색 되는 영역을 미리 제거하여 탐색 성능을 향상하였다. 실험 결과, 기존 온라인 알고리즘과 비교 시 이산 데이터 집합의 표준 분포, 편향 분포, 양의 상관 및 음의 상관분포에서 향상된 성능을 보였다. 제안 기법은 비교 대상을 최소화하여 탐색 성능을 향상하므로 모바일 장치의 사용이 증가하는 현실에서 사용자들에게 신속한 서비스를 제공할 수 있는 새로운 기준이 될 것이다.


Skyline query is a scheme for exploring objects that are suitable for user preferences based on multiple attributes of objects. Existing skyline queries return search results as batch processing, but the need for real-time search results has increased with the advent of interactive apps or mobile environments. Online algorithm for Skyline improves the return speed of objects to explore preferred objects in real time. However, the object navigation process requires unnecessary navigation time due to repeated comparative operations. This paper proposes a Pre-processing Online Algorithm for Skyline Query (POA) to eliminate unnecessary search time in Online Algorithm exploration techniques and provide the results of skyline queries in real time. Proposed techniques use the concept of range-limiting to existing Online Algorithm to perform pretreatment and then eliminate repetitive rediscovering regions first. POAs showed improvement in standard distributions, bias distributions, positive correlations, and negative correlations of discrete data sets compared to Online Algorithm. The POAs used in this paper improve navigation performance by minimizing comparison targets for Online Algorithm, which will be a new criterion for rapid service to users in the face of increasing use of mobile devices.

KCI등재

2엔트로피 시계열 데이터 추출과 순환 신경망을 이용한 IoT 악성코드 탐지와 패밀리 분류

저자 : 김영호 ( Youngho Kim ) , 이현종 ( Hyunjong Lee ) , 황두성 ( Doosung Hwang )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 5호 발행 연도 : 2022 페이지 : pp. 197-202 (6 pages)

다운로드

(기관인증 필요)

초록보기

IoT (Internet of Things) 장치는 취약한 아이디/비밀번호 사용, 인증되지 않은 펌웨어 업데이트 등 많은 보안 취약점을 보여 악성코드의 공격 대상이 되고 있다. 그러나 CPU 구조의 다양성으로 인해 악성코드 분석 환경 설정과 특징 설계에 어려움이 있다. 본 논문에서는 CPU 구조와 독립된 악성코드의 특징 표현을 위해 실행 파일의 바이트 순서를 이용한 시계열 특징을 설계하고 순환 신경망을 통해 분석한다. 제안하는 특징은 바이트 순서의 부분 엔트로피 계산과 선형 보간을 통한 고정 길이의 시계열 패턴이다. 추출된 특징의 시계열 변화는 RNN과 LSTM으로 학습시켜 분석한다. 실험에서 IoT 악성코드 탐지는 높은 성능을 보였지만, 패밀리 분류는 비교적 성능이 낮았다. 악성코드 패밀리별 엔트로피 패턴을 시각화하여 비교했을 때 Tsunami와 Gafgyt 패밀리가 유사한 패턴을 나타내 분류 성능이 낮아진 것으로 분석되었다. 제안된 악성코드 특징의 데이터 간 시계열 변화 학습에 RNN보다 LSTM이 더 적합하다.


IoT (Internet of Things) devices are being attacked by malware due to many security vulnerabilities, such as the use of weak IDs/passwords and unauthenticated firmware updates. However, due to the diversity of CPU architectures, it is difficult to set up a malware analysis environment and design features. In this paper, we design time series features using the byte sequence of executable files to represent independent features of CPU architectures, and analyze them using recurrent neural networks. The proposed feature is a fixed-length time series pattern extracted from the byte sequence by calculating partial entropy and applying linear interpolation. Temporary changes in the extracted feature are analyzed by RNN and LSTM. In the experiment, the IoT malware detection showed high performance, while low performance was analyzed in the malware family classification. When the entropy patterns for each malware family were compared visually, the Tsunami and Gafgyt families showed similar patterns, resulting in low performance. LSTM is more suitable than RNN for learning temporal changes in the proposed malware features.

KCI등재

3EEG Report의 의무기록 유형 분류를 위한 딥러닝 기반 모델

저자 : 오경수 ( Kyoungsu Oh ) , 강민 ( Min Kang ) , 강석환 ( Seok-hwan Kang ) , 이영호 ( Young-ho Lee )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 5호 발행 연도 : 2022 페이지 : pp. 203-210 (8 pages)

다운로드

(기관인증 필요)

초록보기

보건의료 데이터를 사용하는 연구 및 기업이 늘어나며 세계적으로 보건의료 데이터 활성화를 위한 노력을 진행 중이다. 하지만 기관에 따라 사용하는 시스템과 서식이 다르다. 이에 본 연구는 EEG Report의 의무기록 유형을 분류하는 기저 모델 구축을 통해 향후 다기관의 텍스트 데이터를 유형에 따라 분류하는 기저 모델을 구축하였다. EEG Report 분류를 위해 4가지의 딥러닝 기반 알고리즘에 대해 비교하였다. 실험 결과 One-Hot Encoding으로 벡터화하여 학습한 ANN 모델이 71%의 정확도로 가장 높은 성능을 보였다.


As more and more research and companies use health care data, efforts are being made to vitalize health care data worldwide. However, the system and format used by each institution is different. Therefore, this research established a basic model to classify text data onto multiple institutions according to the type of the future by establishing a basic model to classify the types of medical records of the EEG Report. For EEG Report classification, four deep learning-based algorithms were compared. As a result of the experiment, the ANN model trained by vectorizing with One-Hot Encoding showed the highest performance with an accuracy of 71%.

KCI등재

4깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구

저자 : 김현석 ( Hyun Suk Kim ) , 고동범 ( Dong Beom Ko ) , 이원곡 ( Won Gok Lee ) , 배유석 ( You Suk Bae )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 5호 발행 연도 : 2022 페이지 : pp. 211-220 (10 pages)

다운로드

(기관인증 필요)

초록보기

최근 4차 산업혁명으로 촉발된 스마트공장에 관한 연구가 활발히 진행되고 있다. 이에 따라 제조업에서는 강건한 성능의 딥러닝 기술을 바탕으로 생산성 향상과 품질 향상을 위해 다양한 연구를 진행 중이다. 본 논문은 타이어 제조공정의 육안검사 단계에서 타이어 표면 결함을 검출하는 방법에 관한 연구로서 3D 카메라를 통해 취득한 깊이 이미지를 이용한 타이어 표면 결함 검출 방법을 소개한다. 본 연구에서 다루는 타이어 표면 깊이 이미지는 타이어 표면의 얕은 깊이로 인해 발생되는 낮은 깊이 대비와 데이터 취득 환경으로 인해 기준 깊이 값의 차이가 발생하는 문제가 있다. 그리고 제조업의 특성상 검출 성능과 함께 실시간으로 처리될 수 있는 성능을 지닌 알고리즘이 요구된다. 따라서, 본 논문에서는 타이어 표면 결함 검출 알고리즘이 복잡한 알고리즘 파이프라인으로 구성되지 않도록 상대적으로 단순한 방법들을 통해 깊이 이미지를 정규화하는 방법을 연구하였으며 검출 성능과 속도를 모두 만족할 수 있는 딥러닝 방법인 YOLO V3를 이용하여 일반적인 정규화 방법과 본 논문에서 제안하는 정규화 방법의 비교 실험을 진행하였다. 실험의 결과로 본 논문에서 제안한 정규화 방법으로 mAP 0.5 기준 약 7% 성능이 향상된 것을 확인하였으며
본 논문에서 제시한 방법이 효과적임을 보였다.


Recently, research on smart factories triggered by the 4th industrial revolution is being actively conducted. Accordingly, the manufacturing industry is conducting various studies to improve productivity and quality based on deep learning technology with robust performance. This paper is a study on the method of detecting tire surface defects in the visual inspection stage of the tire manufacturing process, and introduces a tire surface defect detection method using a depth image acquired through a 3D camera. The tire surface depth image dealt with in this study has the problem of low contrast caused by the shallow depth of the tire surface and the difference in the reference depth value due to the data acquisition environment. And due to the nature of the manufacturing industry, algorithms with performance that can be processed in real time along with detection performance is required. Therefore, in this paper, we studied a method to normalize the depth image through relatively simple methods so that the tire surface defect detection algorithm does not consist of a complex algorithm pipeline. and conducted a comparative experiment between the general normalization method and the normalization method suggested in this paper using YOLO V3, which could satisfy both detection performance and speed. As a result of the experiment, it is confirmed that the normalization method proposed in this paper improved performance by about 7% based on mAP 0.5, and the method proposed in this paper is effective.

KCI등재

5딥러닝과 센서를 이용한 서비스용 로봇 팔의 설계

저자 : 박명숙 ( Myeong Suk Pak ) , 김규태 ( Kyu Tae Kim ) , 구모세 ( Mo Se Koo ) , 고영준 ( Young Jun Ko ) , 김상훈 ( Sang Hoon Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 5호 발행 연도 : 2022 페이지 : pp. 221-228 (8 pages)

다운로드

(기관인증 필요)

초록보기

인공지능 기술의 적용으로 로봇이 실생활에서 효율성 높은 서비스를 제공할 수 있게 되었다. 본 연구에서는 단순 반복적 작업을 하는 산업용 매니퓰레이터와 달리 서비스 로봇 분야에서 장소의 제약 없이 단독으로 또는 협업하여 사용하기 위한 6자유도 로봇 팔의 설계방법과 지능적인 물체 검출 및 이동 방법을 제시하고 성능을 검증하였다. 로봇 팔에 포함된 임베디드 보드의 ROS 환경에서 깊이 카메라와 딥러닝을 이용하여 로봇팔은 물체를 검출하고, 역기구학 해석을 통해 물체 영역으로 이동한다. 또한 물체와 접촉 시 힘센서 값의 분석을 통해 물체를 정확히 잡고 이동하는 동작이 가능하게 하였다. 제작한 로봇 팔에 대한 성능검증을 위하여 딥러닝과 영상처리를 통한 물체의 정확한 위치 산출, 모터 제어 및 물체 분리에 대한 실험을 하였으며, 실제 동작 여부를 확인하기 위하여 카페에서 흔히 사용하는 다양한 컵들을 분리하는 실험을 수행하였다.


With the application of artificial intelligence technology, robots can provide efficient services in real life. Unlike industrial manipulators that do simple repetitive work, this study presented design methods of 6 degree of freedom robot arm and intelligent object search and movement methods for use alone or in collaboration with no place restrictions in the service robot field and verified performance. Using a depth camera and deep learning in the ROS environment of the embedded board included in the robot arm, the robot arm detects objects and moves to the object area through inverse kinematics analysis. In addition, when contacting an object, it was possible to accurately hold and move the object through the analysis of the force sensor value. To verify the performance of the manufactured robot arm, experiments were conducted on accurate positioning of objects through deep learning and image processing, motor control, and object separation, and finally robot arm was tested to separate various cups commonly used in cafes to check whether they actually operate.

1
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1CoAID+: 소셜 컨텍스트 기반 가짜뉴스 탐지를 위한 COVID-19 뉴스 파급 데이터

저자 : 한소은 ( Soeun Han ) , 강윤석 ( Yoonsuk Kang ) , 고윤용 ( Yunyong Ko ) , 안지원 ( Jeewon Ahn ) , 김유심 ( Yushim Kim ) , 오성수 ( Seongsoo Oh ) , 박희진 ( Heejin Park ) , 김상욱 ( Sang-wook Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 149-156 (8 pages)

다운로드

(기관인증 필요)

초록보기

최근 전 세계적으로 COVID-19이 유행하는 상황 속에서 이와 관련된 가짜뉴스가 심각한 사회적 혼란을 야기하고 있다. 이러한 배경에서 가짜뉴스를 정확하게 탐지하기 위해, 뉴스가 소셜 미디어를 통해 파급되는 과정과 같은 소셜 컨텍스트 정보를 활용하는 소셜 컨텍스트 기반탐지 기법들이 널리 사용되고 있다. 그러나 대부분의 기 구축된 가짜뉴스 탐지를 위한 데이터들은 뉴스 자체의 내용 정보 위주로 구성되어, 소셜 컨텍스트 정보를 거의 포함하지 않는다. 즉, 이 데이터들에는 소셜 컨텍스트 기반 탐지 기법을 적용할 수 없으며, 이러한 데이터의 한계는 가짜뉴스 탐지 연구 분야의 발전을 저해하는 방해 요소이다. 본 논문은 이러한 한계를 극복하기 위해, 기존의 저명한 가짜뉴스 데이터인 CoAID 데이터를 기반으로, 소셜 컨텍스트 정보를 추가적으로 수집하여, CoAID 데이터의 뉴스 내용 정보와 해당 뉴스들의 소셜 컨텍스트 정보를 모두 포함하는 CoAID+ 데이터를 구축한다. 본 논문에서 구축한 CoAID+ 데이터는 기존의 대부분의 소셜 컨텍스트 기반 탐지 기법들에 적용될 수 있으며, 향후 새로운 소셜 컨텍스트 기반 탐지 기법들에 대한 연구도 더욱 활성화시킬 수 있을 것으로 기대된다. 마지막으로, 본 논문은 다양한 관점에서 CoAID+ 데이터를 분석하여 진짜뉴스와 가짜뉴스의 파급 패턴 및 키워드에 따른 파급 패턴도 파악하여 소개한다.

KCI등재

2데이터베이스에서 유사도 질의 처리 비용 감소 방법

저자 : 김선경 ( Sunkyung Kim ) , 박지수 ( Ji Su Park ) , 손진곤 ( Jin Gon Shon )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 157-162 (6 pages)

다운로드

(기관인증 필요)

초록보기

오늘날 대부분의 데이터는 데이터베이스(database: DB)에 저장된다. 이러한 DB 환경에서 사용자는 자신이 원하는 데이터를 찾아줄 것을 DB에게 요청하게 된다. DB 질의 중 유사도 질의는 DB 사용자가 원하는 조건으로 유사도가 포함되어 있는 것을 말한다. 그러나 유사도 질의를 처리하기 위한 과정은 처리 레코드의 범위를 줄일 수 있는 색인을 이용하기 힘들어 테이블의 전체 레코드에 대해서 매번 유사도를 계산하는 비용이 높다. 본 논문은 이러한 문제점을 해결하기 위하여 경량 유사도 함수를 정의한다. 경량 유사도 함수는 유사도 함수에 비해 데이터를 여과하는 정확도는 떨어지지만 비용이 유사도 함수에 비하여 적게 소모되는 특징이 있다. 이러한 경량 유사도 함수의 특징을 이용하여 유사도 질의 처리 비용 감소방법을 제시한다. 그리고 유클리드 거리 함수에 경량 유사도 함수로 체비쇼프 거리를 제시하고 기존의 유사도 함수를 이용하는 질의와 경량 유사도 함수를 이용하는 질의의 처리 비용을 비교한다. 그리고 실험을 통하여 유클리드 유사도에 대한 경량 유사도 함수로 체비쇼프 거리를 적용하였을 때 유사도 질의 처리 비용이 감소하는 것을 확인한다.

KCI등재

3에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법

저자 : 임종범 ( Jongbeom Lim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 163-168 (6 pages)

다운로드

(기관인증 필요)

초록보기

클라우드 컴퓨팅과 사물인터넷의 대중화에 따라 사물인터넷 컴퓨팅 환경에 존재하는 인터넷 연결이 가능한 장치들의 수가 점차 증가하고 있다. 또한 스마트홈, 헬스케어 등 사물인터넷을 이용한 다양한 인터넷 응용이 많아짐에 따라 통신 지연 및 연산의 신뢰성과 같은 지표의 서비스품질과 관련된 연구들이 진행되고 있다. 사물인터넷 응용의 서비스품질 향상을 위해 중앙집중형 클라우드 서버에 연결하기 보다 장치와 가까이 존재하고 중앙집중형 클라우드 서버와의 오프로드(offload) 협업을 위해 에지 컴퓨팅(edge computing)이 결함된 클라우드-포그 컴퓨팅 환경이 주목을 받고 있다. 하지만 클라우드-포그 컴퓨팅 환경에서 장치들이 이동성을 특성을 가질 때 사물인터넷 응용 서비스의 연속성이 떨어지고 서비스품질 수준이 저하되는 문제점이 발생하고 있다. 이 논문에서는 에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법을 제안한다. 제안하는 자원 관리 알고리즘은 사용자의 이동성 방향과 속도를 기반으로 일정 시간 뒤의 위치를 예측하고 이를 기반으로 라이브 마이그레이션을 통해 사물인터넷 서비스 이주를 지원한다. 성능 평가를 통해 제안하는 자원 관리 알고리즘의 효용성을 측정하였으며, 성능 실험에서 정지시간(downtime)과 서비스 작업의 신뢰성이 크게 향상됨을 보였다.

KCI등재

4Korean Morphological Analysis Method Based on BERT-Fused Transformer Model

저자 : Changjae Lee , Dongyul Ra

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 169-178 (10 pages)

다운로드

(기관인증 필요)

초록보기

형태소는 더 이상 분리하면 본래의 의미를 잃어버리는 말의 최소 단위이다. 한국어에서 문장은 공백으로 구분되는 어절(단어)의 조합이다. 형태소 분석은 어절 단위의 문장을 입력 받아서 문맥 정보를 활용하여 형태소 단위로 나누고 각 형태소에 적절한 품사 기호를 부착한 결과를 생성하는 것이다. 한국어 자연어 처리에서 형태소 분석은 가장 핵심적인 태스크다. 형태소 분석의 성능 향상은 한국어 자연어 처리 태스크의 성능 향상에 직결된다. 최근 형태소 분석은 주로 기계 번역 관점에서 연구가 진행되고 있다. 기계 번역은 신경망 모델 등으로 어느 한 도메인의 시퀀스(문장)를 다른 도메인의 시퀀스(문장)로 바꾸는 것이다. 형태소 분석을 기계 번역 관점에서 보면 어절 도메인에 속하는 입력 시퀀스를 형태소 도메인 시퀀스로 변환하는 것이다. 본 논문은 한국어 형태소 분석을 위한 딥러닝 모델을 제안한다. 본 연구에서 사용하는 모델은 기계 번역에서 높은 성능을 기록한 BERT-fused 모델을 기반으로 한다. BERT-fused 모델은 기계 번역에서 대표적인 Transformer 모델과 자연어 처리 분야에 획기적인 성능 향상을 이룬 언어모델인 BERT를 활용한다. 실험 결과 형태소 단위 F1-Score 98.24의 성능을 얻을 수 있었다.

KCI등재

5MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법

저자 : 서양진 ( Yangjin Seo )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 179-188 (10 pages)

다운로드

(기관인증 필요)

초록보기

기계의 주요 부품인 베어링 결함 진단에 딥러닝을 활용하는 연구가 활발하게 진행되어 좋은 성능을 달성하였으나, 학습 데이터와 테스트 데이터의 운영 환경 차이로 인해 기계가 실제로 가동되는 환경에서는 성능 저하가 발생하는 문제가 있다. 학습 데이터와 테스트 데이터의 분포 차이 문제를 다루는 방법으로 데이터 적응이 제안되어 좋은 결과를 보여주고 있으나, 각 방법이 가정하고 있는 특정 적용 시나리오를 벗어나기 어렵다는 제약이 있다. 이에 본 연구는 MFCCs를 이용한 입력 데이터의 변환과 간단한 CNN 구조를 이용해 원시 도메인 데이터로부터 생성된 모델에 대해 추가적인 학습이나 조정 없이 타겟 도메인 데이터에 대한 테스트를 강건하게 수행하는 방법을 제안하였으며, 대표적인 베어링 결함 진단 데이터셋인 CWRU 베어링 데이터를 이용해 제안한 방법에 대한 실험 및 분석을 수행하였다. 실험 결과 전이 학습 기반의 방법들과 대등한 성능을 보였으며, 입력 변환 기반의 베이스라인 방법보다는 최소 15% 정도의 높은 성능을 달성하였다.

1
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기