Improving the Adsorption Efficiencies of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers Using a Passive Water Sampling Device in Marine Environment
1. 서 론 2. 재료 및 방법 3. 결과 및 고찰 4. 결 론 감사의 글 참고문헌
This study focused on improving the adsorption efficiencies of organic micropollutants, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) using a passive water sampling device (PWSD) in a marine environment during summer. Two factors were considered when increasing the adsorption efficiency by improving the sampling rate (Rs) of PWSDs for target PCBs and PBDEs: 1. Controlling the invasion of the sticky organisms that cause biofouling by tearing the semipermeable membrane device (SPMD) inside the PWSD canister; 2. Preventing various suspended solids from clogging the PWSD pores. To resolve these problems, two types of enhanced PWSD samplers were devised, namely a round prest-type PWSD canister with zooplankton netting (netted), and a copper-coated prest-type PWSD canister. Copper is generally toxic to marine organisms. The netted and copper-coated PWSD samplers were deployed in Masan Bay and Ulsan Bay and their adsorption efficiencies for PCBs and PBDEs were compared with that of the prest-type PWSD sampler. The copper-coated PWSD had an Rs 1.5~1.8 times higher than that of the netted and prest-type PWSDs. A comparison of the adsorption amount of PCBs and PBDEs showed similar results, and copper-coated PWSD adsorbed more target compounds than the netted and prest-type PWSDs. The adsorption patterns of PCB homologues were similar regardless of the sampling site and sampler type, but those of PBDE homologues in the netted and prest-type PWSDs deployed in Ulsan Bay were somewhat different from the others. By comparing the adsorption amounts of PCB and PBDE homologues according to the octanol-water partition coefficients, it was found that the copper-coated PWSD adsorbed more PCBs and PBDEs than the netted and prest-type PWSDs, especially high molecular homologues. Based on these results, the copper-coated PWSD could be used to effectively prevent the biofouling of the SPMD membrane and clogging of the PWSD canister during both summer and winter.
I410-ECN-0102-2022-500-000939578
한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.
이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.
간행물명 | 최신권호 |
---|---|
|
30권 2호 |
|
25권 2호 |
|
39권 2호 |
|
25권 1호 |
|
38권 2호 |
|
32권 1호 |
|
30권 1호 |
|
31권 1호 |
|
25권 1호 |
|
23권 1호 |
|
39권 1호 |
|
38권 1호 |
|
24권 4호 |
|
24권 6호 |
|
31권 4호 |
|
29권 6호 |
|
30권 6호 |
|
22권 6호 |
|
38권 6호 |
대한지질공학회 학술발표논문집 |
2021권 2호 |
자료제공: 네이버학술정보 |
---|
자료제공: 네이버학술정보 |
---|
본 자료는 원문파일이 존재하지 않거나 서비스를 위한 준비 중입니다.
빠른 시일 내에 서비스할 수 있도록 노력하겠습니다.
관련문의사항은 kiss@kstudy.com 으로 연락주시기 바랍니다.
감사합니다.
개인회원가입으로 더욱 편리하게 이용하세요.
아이디/비밀번호를 잊으셨나요?