논문 상세보기

한국정보처리학회> 정보처리학회논문지. 소프트웨어 및 데이터 공학> 시계열 예측을 위한 스타일 기반 트랜스포머

KCI등재

시계열 예측을 위한 스타일 기반 트랜스포머

Style-Based Transformer for Time Series Forecasting

김동건 ( Dong-keon Kim ) , 김광수 ( Kwangsu Kim )
  • : 한국정보처리학회
  • : 정보처리학회논문지. 소프트웨어 및 데이터 공학 10권12호
  • : 연속간행물
  • : 2021년 12월
  • : 579-586(8pages)
정보처리학회논문지. 소프트웨어 및 데이터 공학

DOI


목차

1. 서 론
2. 이전 연구
3. 예측 모델
4. 실 험
5. 결 론
References

키워드 보기


초록 보기

시계열 예측은 과거 시점의 정보를 토대로 미래 시점의 정보를 예측하는 것을 말한다. 향후 시점의 정보를 정확하게 예측하는 것은 다양한 분야 전략 수립, 정책 결정 등을 위해 활용되기 때문에 매우 중요하다. 최근에는 트랜스포머 모델이 시계열 예측 모델로서 주로 연구되고 있다. 그러나 기존의 트랜스포머의 모델은 예측 순차를 출력할 때 출력 결과를 다시 입력하는 자가회귀 구조로 되어 있다는 한계점이 있다. 이 한계점은 멀리 떨어진 시점을 예측할 때 정확도가 떨어진다는 문제점을 초래한다. 본 논문에서는 이러한 문제점을 개선하고 더 정확한 시계열 예측을 위해 스타일 변환 기법에 착안한 순차 디코딩 모델을 제안한다. 제안하는 모델은 트랜스포머-인코더에서 과거 정보의 특성을 추출하고, 이를 스타일-기반디코더에 반영하여 예측 시계열을 생성하는 구조로 되어 있다. 이 구조는 자가회귀 방식의 기존의 트랜스포머의 디코더 구조와 다르게, 예측 순차를 한꺼번에 출력하기 때문에 더 먼 시점의 정보를 좀 더 정확히 예측할 수 있다는 장점이 있다. 서로 다른 데이터 특성을 가지는 다양한 시계열 데이터셋으로 예측 실험을 진행한 결과, 본 논문에서 제시한 모델이 기존의 다른 시계열 예측 모델보다 예측 정확도가 우수하다는 것을 보인다.
Time series forecasting refers to predicting future time information based on past time information. Accurately predicting future information is crucial because it is used for establishing strategies or making policy decisions in various fields. Recently, a transformer model has been mainly studied for a time series prediction model. However, the existing transformer model has a limitation in that it has an auto-regressive structure in which the output result is input again when the prediction sequence is output. This limitation causes a problem in that accuracy is lowered when predicting a distant time point. This paper proposes a sequential decoding model focusing on the style transformation technique to handle these problems and make more precise time series forecasting. The proposed model has a structure in which the contents of past data are extracted from the transformer-encoder and reflected in the style-based decoder to generate the predictive sequence. Unlike the decoder structure of the conventional auto-regressive transformer, this structure has the advantage of being able to more accurately predict information from a distant view because the prediction sequence is output all at once. As a result of conducting a prediction experiment with various time series datasets with different data characteristics, it was shown that the model presented in this paper has better prediction accuracy than other existing time series prediction models.

UCI(KEPA)

I410-ECN-0102-2022-500-000967270

간행물정보

  • : 공학분야  > 전자공학
  • : KCI등재
  • :
  • : 월간
  • : 2287-5905
  • : 2734-0503
  • : 학술지
  • : 연속간행물
  • : 2012-2022
  • : 693


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

11권4호(2022년 04월) 수록논문
최근 권호 논문
| | | |

KCI등재

1CoAID+: 소셜 컨텍스트 기반 가짜뉴스 탐지를 위한 COVID-19 뉴스 파급 데이터

저자 : 한소은 ( Soeun Han ) , 강윤석 ( Yoonsuk Kang ) , 고윤용 ( Yunyong Ko ) , 안지원 ( Jeewon Ahn ) , 김유심 ( Yushim Kim ) , 오성수 ( Seongsoo Oh ) , 박희진 ( Heejin Park ) , 김상욱 ( Sang-wook Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 149-156 (8 pages)

다운로드

(기관인증 필요)

초록보기

최근 전 세계적으로 COVID-19이 유행하는 상황 속에서 이와 관련된 가짜뉴스가 심각한 사회적 혼란을 야기하고 있다. 이러한 배경에서 가짜뉴스를 정확하게 탐지하기 위해, 뉴스가 소셜 미디어를 통해 파급되는 과정과 같은 소셜 컨텍스트 정보를 활용하는 소셜 컨텍스트 기반탐지 기법들이 널리 사용되고 있다. 그러나 대부분의 기 구축된 가짜뉴스 탐지를 위한 데이터들은 뉴스 자체의 내용 정보 위주로 구성되어, 소셜 컨텍스트 정보를 거의 포함하지 않는다. 즉, 이 데이터들에는 소셜 컨텍스트 기반 탐지 기법을 적용할 수 없으며, 이러한 데이터의 한계는 가짜뉴스 탐지 연구 분야의 발전을 저해하는 방해 요소이다. 본 논문은 이러한 한계를 극복하기 위해, 기존의 저명한 가짜뉴스 데이터인 CoAID 데이터를 기반으로, 소셜 컨텍스트 정보를 추가적으로 수집하여, CoAID 데이터의 뉴스 내용 정보와 해당 뉴스들의 소셜 컨텍스트 정보를 모두 포함하는 CoAID+ 데이터를 구축한다. 본 논문에서 구축한 CoAID+ 데이터는 기존의 대부분의 소셜 컨텍스트 기반 탐지 기법들에 적용될 수 있으며, 향후 새로운 소셜 컨텍스트 기반 탐지 기법들에 대한 연구도 더욱 활성화시킬 수 있을 것으로 기대된다. 마지막으로, 본 논문은 다양한 관점에서 CoAID+ 데이터를 분석하여 진짜뉴스와 가짜뉴스의 파급 패턴 및 키워드에 따른 파급 패턴도 파악하여 소개한다.


In the current COVID-19 pandemic, fake news and misinformation related to COVID-19 have been causing serious confusion in our society. To accurately detect such fake news, social context-based methods have been widely studied in the literature. They detect fake news based on the social context that indicates how a news article is propagated over social media (e.g., Twitter). Most existing COVID-19 related datasets gathered for fake news detection, however, contain only the news content information, but not its social context information. In this case, the social context-based detection methods cannot be applied, which could be a big obstacle in the fake news detection research. To address this issue, in this work, we collect from Twitter the social context information based on CoAID, which is a COVID-19 news content dataset built for fake news detection, thereby building CoAID+ that includes both the news content information and its social context information. The CoAID+ dataset can be utilized in a variety of methods for social context-based fake news detection, thus would help revitalize the fake news detection research area. Finally, through a comprehensive analysis of the CoAID+ dataset in various perspectives, we present some interesting features capable of differentiating real and fake news.

KCI등재

2데이터베이스에서 유사도 질의 처리 비용 감소 방법

저자 : 김선경 ( Sunkyung Kim ) , 박지수 ( Ji Su Park ) , 손진곤 ( Jin Gon Shon )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 157-162 (6 pages)

다운로드

(기관인증 필요)

초록보기

오늘날 대부분의 데이터는 데이터베이스(database: DB)에 저장된다. 이러한 DB 환경에서 사용자는 자신이 원하는 데이터를 찾아줄 것을 DB에게 요청하게 된다. DB 질의 중 유사도 질의는 DB 사용자가 원하는 조건으로 유사도가 포함되어 있는 것을 말한다. 그러나 유사도 질의를 처리하기 위한 과정은 처리 레코드의 범위를 줄일 수 있는 색인을 이용하기 힘들어 테이블의 전체 레코드에 대해서 매번 유사도를 계산하는 비용이 높다. 본 논문은 이러한 문제점을 해결하기 위하여 경량 유사도 함수를 정의한다. 경량 유사도 함수는 유사도 함수에 비해 데이터를 여과하는 정확도는 떨어지지만 비용이 유사도 함수에 비하여 적게 소모되는 특징이 있다. 이러한 경량 유사도 함수의 특징을 이용하여 유사도 질의 처리 비용 감소방법을 제시한다. 그리고 유클리드 거리 함수에 경량 유사도 함수로 체비쇼프 거리를 제시하고 기존의 유사도 함수를 이용하는 질의와 경량 유사도 함수를 이용하는 질의의 처리 비용을 비교한다. 그리고 실험을 통하여 유클리드 유사도에 대한 경량 유사도 함수로 체비쇼프 거리를 적용하였을 때 유사도 질의 처리 비용이 감소하는 것을 확인한다.


Today, most data is stored in a database (DB). In the DB environment, the users requests the DB to find the data they wants. Similarity Query has predicate that explained by a similarity. However, in the process of processing the similarity query, it is difficult to use an index that can reduce the range of processed records, so the cost of calculating the similarity for all records in the table is high each time. To solve this problem, this paper defines a lightweight similarity function. The lightweight similarity function has lower data filtering accuracy than the similarity function, but consumes less cost than the similarity function. We present a method for reducing similarity query processing cost by using the lightweight similarity function features. Then, Chebyshev distance is presented as a lightweight similarity function to the Euclidean distance function, and the processing cost of a query using the existing similarity function and a query using the lightweight similarity function is compared. And through experiments, it is confirmed that the similarity query processing cost is reduced when Chebyshev distance is applied as a lightweight similarity function for Euclidean similarity.

KCI등재

3에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법

저자 : 임종범 ( Jongbeom Lim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 163-168 (6 pages)

다운로드

(기관인증 필요)

초록보기

클라우드 컴퓨팅과 사물인터넷의 대중화에 따라 사물인터넷 컴퓨팅 환경에 존재하는 인터넷 연결이 가능한 장치들의 수가 점차 증가하고 있다. 또한 스마트홈, 헬스케어 등 사물인터넷을 이용한 다양한 인터넷 응용이 많아짐에 따라 통신 지연 및 연산의 신뢰성과 같은 지표의 서비스품질과 관련된 연구들이 진행되고 있다. 사물인터넷 응용의 서비스품질 향상을 위해 중앙집중형 클라우드 서버에 연결하기 보다 장치와 가까이 존재하고 중앙집중형 클라우드 서버와의 오프로드(offload) 협업을 위해 에지 컴퓨팅(edge computing)이 결함된 클라우드-포그 컴퓨팅 환경이 주목을 받고 있다. 하지만 클라우드-포그 컴퓨팅 환경에서 장치들이 이동성을 특성을 가질 때 사물인터넷 응용 서비스의 연속성이 떨어지고 서비스품질 수준이 저하되는 문제점이 발생하고 있다. 이 논문에서는 에지 기반 포그 컴퓨팅 환경에서 이동성 지원을 위한 라이브 마이그레이션 기반 자원 관리 기법을 제안한다. 제안하는 자원 관리 알고리즘은 사용자의 이동성 방향과 속도를 기반으로 일정 시간 뒤의 위치를 예측하고 이를 기반으로 라이브 마이그레이션을 통해 사물인터넷 서비스 이주를 지원한다. 성능 평가를 통해 제안하는 자원 관리 알고리즘의 효용성을 측정하였으며, 성능 실험에서 정지시간(downtime)과 서비스 작업의 신뢰성이 크게 향상됨을 보였다.


As cloud computing and the Internet of things are getting popular, the number of devices in the Internet of things computing environments is increasing. In addition, there exist various Internet-based applications, such as home automation and healthcare. In turn, existing studies explored the quality of service, such as downtime and reliability of tasks for Internet of things applications. To enhance the quality of service of Internet of things applications, cloud-fog computing (combining cloud computing and edge computing) can be used for offloading burdens from the central cloud server to edge servers. However, when devices inherit the mobility property, continuity and the quality of service of Internet of things applications can be reduced. In this paper, we propose a resource management scheme based on live migrations for mobility support in edge-based fog computing environments. The proposed resource management algorithm is based on the mobility direction and pace to predict the expected position, and migrates tasks to the target edge server. The performance results show that our proposed resource management algorithm improves the reliability of tasks and reduces downtime of services.

KCI등재

4Korean Morphological Analysis Method Based on BERT-Fused Transformer Model

저자 : Changjae Lee , Dongyul Ra

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 169-178 (10 pages)

다운로드

(기관인증 필요)

초록보기

형태소는 더 이상 분리하면 본래의 의미를 잃어버리는 말의 최소 단위이다. 한국어에서 문장은 공백으로 구분되는 어절(단어)의 조합이다. 형태소 분석은 어절 단위의 문장을 입력 받아서 문맥 정보를 활용하여 형태소 단위로 나누고 각 형태소에 적절한 품사 기호를 부착한 결과를 생성하는 것이다. 한국어 자연어 처리에서 형태소 분석은 가장 핵심적인 태스크다. 형태소 분석의 성능 향상은 한국어 자연어 처리 태스크의 성능 향상에 직결된다. 최근 형태소 분석은 주로 기계 번역 관점에서 연구가 진행되고 있다. 기계 번역은 신경망 모델 등으로 어느 한 도메인의 시퀀스(문장)를 다른 도메인의 시퀀스(문장)로 바꾸는 것이다. 형태소 분석을 기계 번역 관점에서 보면 어절 도메인에 속하는 입력 시퀀스를 형태소 도메인 시퀀스로 변환하는 것이다. 본 논문은 한국어 형태소 분석을 위한 딥러닝 모델을 제안한다. 본 연구에서 사용하는 모델은 기계 번역에서 높은 성능을 기록한 BERT-fused 모델을 기반으로 한다. BERT-fused 모델은 기계 번역에서 대표적인 Transformer 모델과 자연어 처리 분야에 획기적인 성능 향상을 이룬 언어모델인 BERT를 활용한다. 실험 결과 형태소 단위 F1-Score 98.24의 성능을 얻을 수 있었다.


Morphemes are most primitive units in a language that lose their original meaning when segmented into smaller parts. In Korean, a sentence is a sequence of eojeols (words) separated by spaces. Each eojeol comprises one or more morphemes. Korean morphological analysis (KMA) is to divide eojeols in a given Korean sentence into morpheme units. It also includes assigning appropriate part-of-speech(POS) tags to the resulting morphemes. KMA is one of the most important tasks in Korean natural language processing (NLP). Improving the performance of KMA is closely related to increasing performance of Korean NLP tasks. Recent research on KMA has begun to adopt the approach of machine translation (MT) models. MT is to convert a sequence (sentence) of units of one domain into a sequence (sentence) of units of another domain. Neural machine translation (NMT) stands for the approaches of MT that exploit neural network models. From a perspective of MT, KMA is to transform an input sequence of units belonging to the eojeol domain into a sequence of units in the morpheme domain. In this paper, we propose a deep learning model for KMA. The backbone of our model is based on the BERT-fused model which was shown to achieve high performance on NMT. The BERT-fused model utilizes Transformer, a representative model employed by NMT, and BERT which is a language representation model that has enabled a significant advance in NLP. The experimental results show that our model achieves 98.24 F1-Score.

KCI등재

5MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법

저자 : 서양진 ( Yangjin Seo )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 4호 발행 연도 : 2022 페이지 : pp. 179-188 (10 pages)

다운로드

(기관인증 필요)

초록보기

기계의 주요 부품인 베어링 결함 진단에 딥러닝을 활용하는 연구가 활발하게 진행되어 좋은 성능을 달성하였으나, 학습 데이터와 테스트 데이터의 운영 환경 차이로 인해 기계가 실제로 가동되는 환경에서는 성능 저하가 발생하는 문제가 있다. 학습 데이터와 테스트 데이터의 분포 차이 문제를 다루는 방법으로 데이터 적응이 제안되어 좋은 결과를 보여주고 있으나, 각 방법이 가정하고 있는 특정 적용 시나리오를 벗어나기 어렵다는 제약이 있다. 이에 본 연구는 MFCCs를 이용한 입력 데이터의 변환과 간단한 CNN 구조를 이용해 원시 도메인 데이터로부터 생성된 모델에 대해 추가적인 학습이나 조정 없이 타겟 도메인 데이터에 대한 테스트를 강건하게 수행하는 방법을 제안하였으며, 대표적인 베어링 결함 진단 데이터셋인 CWRU 베어링 데이터를 이용해 제안한 방법에 대한 실험 및 분석을 수행하였다. 실험 결과 전이 학습 기반의 방법들과 대등한 성능을 보였으며, 입력 변환 기반의 베이스라인 방법보다는 최소 15% 정도의 높은 성능을 달성하였다.


There have been many successful researches on a bearing fault diagnosis based on Deep Learning, but there is still a critical issue of the data distribution difference between training data and test data from their different working conditions causing performance degradation in applying those methods to the machines in the field. As a solution, a data adaptation method has been proposed and showed a good result, but each and every approach is strictly limited to a specific applying scenario or presupposition, which makes it still difficult to be used as a real-world application. Therefore, in this study, we have proposed a method that, using a data transformation with MFCCs and a simple CNN architecture, can perform a robust diagnosis on a target domain data without an additional learning or tuning on the model generated from a source domain data and conducted an experiment and analysis on the proposed method with the CWRU bearing dataset, which is one of the representative datasests for bearing fault diagnosis. The experimental results showed that our method achieved an equal performance to those of transfer learning based methods and a better performance by at least 15% compared to that of an input transformation based baseline method.

1
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1개인별 유전자 네트워크 구축 및 페이지랭크를 이용한 환자 특이적 암 유발 유전자 탐색 방법

저자 : 정희원 ( Jung Hee Won ) , 박지우 ( Park Ji Woo ) , 안재균 ( Ahn Jae Gyoon )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 10권 12호 발행 연도 : 2021 페이지 : pp. 547-554 (8 pages)

다운로드

(기관인증 필요)

초록보기

암을 유발하는 유전자는 모든 암 환자에게 공통적인 것은 아니며, 이러한 환자 특이적 암 유발 유전자의 탐색은 개인 맟춤형 암 치료 및 항암제 개발에 있어서 매우 중요하다. 환자 특이적 암 유발 유전자를 찾기 위한 생물 정보학 연구들이 있어왔지만, 아직 정확도 면에서는 발전의 여지가 있다. 본 논문에서는 환자 특이적 암 유발 유전자를 탐색하기 위하여 NPD (Network based Patient-specific Driver gene identification)라는 방법을 제안한다. NPD는 환자 특이적 유전자 네트워크를 구축하고, 여기에 수정된 PageRank 알고리즘을 적용하여 유전자에 점수를 부여한 후, 유전적 변이 데이터를 사용한 승률 계산 방법을 통하여 암 유발 유전자를 찾는 세 단계로 이루어진다. TCGA 데이터베이스의 여섯 개의 암 데이터에 NPD를 적용한 결과, NPD가 기존의 환자 특이적 암 유발 유전자 탐색 방법들보다 전체적으로 높은 F1 점수를 보여줌을 확인할 수 있었다.

KCI등재

2다중 레이블 분류를 활용한 안면 피부 질환 인식에 관한 연구

저자 : 임채현 ( Chae Hyun Lim ) , 손민지 ( Son Min Ji ) , 김명호 ( Kim Myung Ho )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 10권 12호 발행 연도 : 2021 페이지 : pp. 555-560 (6 pages)

다운로드

(기관인증 필요)

초록보기

최근 안면 피부 미용에 대한 사람들의 관심이 높아짐에 따라 딥 러닝을 활용한 안면 피부 미용을 위한 피부 질환 인식 연구가 진행되고 있다. 이러한 연구들은 여드름을 비롯한 다양한 피부 질환을 인식한다. 기존의 연구들은 단일 피부 질환만을 인식하지만, 안면에 발생하는 피부질환은 더 다양하고 복합적으로 발생할 수 있다. 따라서 본 논문에서는 Inception-ResNet V2 모델을 활용하여 다중 레이블 분류 방법으로 여드름, 블랙헤드, 주근깨, 검버섯, 일반 피부, 화이트헤드에 관한 복합적인 피부 질환을 인식한다. 사용한 평가 지표 중 정확도는 98.8%, 해밍손실은 0.003을 달성하였고, 단일 클래스별 정밀도, 재현율, F1-점수는 모두 96.6% 이상을 달성하였다.

KCI등재

3YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구

저자 : 김영민 ( Young-min Kim ) , 안현욱 ( Hyeon-uk An ) , 전희균 ( Hee-gyun Jeon ) , 김진평 ( Jin-pyeong Kim ) , 장규진 ( Gyu-jin Jang ) , 황현철 ( Hyeon-chyeol Hwang )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 10권 12호 발행 연도 : 2021 페이지 : pp. 561-568 (8 pages)

다운로드

(기관인증 필요)

초록보기

최근 자율주행에 관한 기술은 고부가가치 신기술로서 주목받고 있으며 활발히 연구가 진행되고 있는 분야이다. 상용화 가능한 자율주행을 위해서는 실시간으로 정확하게 진입하는 객체를 탐지하고 이동속도를 추정해야 한다. CNN(Convolutional Neural Network) 기반 딥러닝 알고리즘과 밀집광학흐름(Dense Optical Flow)을 사용하는 기존 방식은 실행 속도가 느려 실시간으로 객체를 탐지하고 이동속도를 추정하기에는 한계가 존재한다. 본 논문에서는 트램에 설치된 카메라를 통해 획득된 주행영상에서 딥러닝 알고리즘인 YOLOv5 알고리즘을 활용하여 실시간으로 객체를 탐지를 수행하고, 탐지된 객체영역에서 기존의 밀집광학흐름(Dense Optical Flow) 대신 연산량을 개선한 부분 밀집광학흐름(Local Dense Optical Flow)을 사용하여 객체의 진행 방향과 속력을 빠르게 추정하는 방식을 제안한다. 이를 바탕으로 충돌 시간과 충돌 지점을 예측할 수 있는 모델을 설계하였으며, 이를 통해 트램(Tram)의 주행 중 전방 충돌사고를 방지할 수 있는 시스템에 적용하고자 한다.

KCI등재

4검증 자료를 활용한 가짜뉴스 탐지 자동화 연구

저자 : 한윤진 ( Yoon-jin Han ) , 김근형 ( Geun-hyung Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 10권 12호 발행 연도 : 2021 페이지 : pp. 569-578 (10 pages)

다운로드

(기관인증 필요)

초록보기

오늘날 웹의 발전으로 우리는 각종 언론 매체를 통해 온라인 기사를 쉽게 접하게 된다. 온라인 기사를 쉽게 접할 수 있게 된 만큼 거짓 정보를 진실로 위장한 가짜뉴스 또한 빈번하게 찾아볼 수 있다. 가짜뉴스가 전 세계적으로 대두되면서 국내에서도 가짜뉴스를 탐지하기 위한 팩트 체크서비스가 제공되고 있으나, 이는 전문가 기반의 수동 탐지 방법을 기반으로 하며 가짜뉴스 탐지를 자동화하는 기술에 대한 연구가 계속해서 활발하게 이루어지고 있다. 기존 연구는 기사 작성에 사용된 문맥의 특성이나, 기사 제목과 기사 본문의 내용 비교를 통한 탐지 방법이 가장 많이 사용되고 있으나, 이러한 시도는 조작의 정밀도가 높아졌을 때 탐지가 어려워질 수 있다는 한계를 가진다. 따라서 본 논문에서는 기사 조작의 발달에 따른 영향을 받지 않기 위하여 기사의 진위 여부를 판단할 수 있는 검증기사를 함께 사용하는 방법을 제안한다. 또한 가짜뉴스 탐지 정확도를 개선시킬 수 있도록 실험에 사용되는 기사와 검증기사를 문서 요약 모델을 통해 요약하는 과정을 추가했다. 본 논문에서는 제안 알고리즘을 검증하기 위해 문서 요약 기법 검증, 검증기사 검색 기법 검증, 그리고 최종적인 제안 알고리즘의 가짜뉴스 탐지 정확도 검증을 진행하였다. 본 연구에서 제안한 알고리즘은 다양한 언론 매체에 적용하여 기사가 온라인으로 확산되기 이전에 진위 여부를 판단하는 방법으로 유용하게 사용될 수 있다.

KCI등재

5시계열 예측을 위한 스타일 기반 트랜스포머

저자 : 김동건 ( Dong-keon Kim ) , 김광수 ( Kwangsu Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 10권 12호 발행 연도 : 2021 페이지 : pp. 579-586 (8 pages)

다운로드

(기관인증 필요)

초록보기

시계열 예측은 과거 시점의 정보를 토대로 미래 시점의 정보를 예측하는 것을 말한다. 향후 시점의 정보를 정확하게 예측하는 것은 다양한 분야 전략 수립, 정책 결정 등을 위해 활용되기 때문에 매우 중요하다. 최근에는 트랜스포머 모델이 시계열 예측 모델로서 주로 연구되고 있다. 그러나 기존의 트랜스포머의 모델은 예측 순차를 출력할 때 출력 결과를 다시 입력하는 자가회귀 구조로 되어 있다는 한계점이 있다. 이 한계점은 멀리 떨어진 시점을 예측할 때 정확도가 떨어진다는 문제점을 초래한다. 본 논문에서는 이러한 문제점을 개선하고 더 정확한 시계열 예측을 위해 스타일 변환 기법에 착안한 순차 디코딩 모델을 제안한다. 제안하는 모델은 트랜스포머-인코더에서 과거 정보의 특성을 추출하고, 이를 스타일-기반디코더에 반영하여 예측 시계열을 생성하는 구조로 되어 있다. 이 구조는 자가회귀 방식의 기존의 트랜스포머의 디코더 구조와 다르게, 예측 순차를 한꺼번에 출력하기 때문에 더 먼 시점의 정보를 좀 더 정확히 예측할 수 있다는 장점이 있다. 서로 다른 데이터 특성을 가지는 다양한 시계열 데이터셋으로 예측 실험을 진행한 결과, 본 논문에서 제시한 모델이 기존의 다른 시계열 예측 모델보다 예측 정확도가 우수하다는 것을 보인다.

KCI등재

6뇌파의 중첩 분할에 기반한 CNN 앙상블 모델을 이용한 뇌전증 발작 검출

저자 : 김민기 ( Min-ki Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 10권 12호 발행 연도 : 2021 페이지 : pp. 587-594 (8 pages)

다운로드

(기관인증 필요)

초록보기

뇌파(electroencephalogram, EEG)를 이용한 진단이 확대되면서 EEG 신호를 자동으로 분류하기 위한 다양한 연구가 활발히 이루어지고 있다. 본 논문은 일반인과 뇌전증 환자에게서 추출한 EEG 신호를 효과적으로 식별할 수 있는 CNN 모델을 제안한다. CNN의 학습에 필요한 데이터를 확장하기 위하여 EEG 신호를 낮은 차원의 신호로 분할하고, 이것을 다시 여러 개의 세그먼트로 중첩 분할하여 CNN 학습에 이용한다. 이와 더불어 CNN의 성능을 개선하기 위하여 CNN 앙상블 전략을 제안한다. 공개된 Bonn 데이터세트로 실험을 수행한 결과 뇌전증 발작을 99.0% 이상의 정확도로 검출하였고, 앙상블 방식에 의해 3-클래스와 5-클래스의 EEG 분류에서 정확도가 향상되었다.

KCI등재

7Cloud Robotics Platform 환경에서 Node간 안전한 통신 기법

저자 : 김형주 ( Hyungjoo Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 10권 12호 발행 연도 : 2021 페이지 : pp. 595-602 (8 pages)

다운로드

(기관인증 필요)

초록보기

로봇은 주변 상황을 인지하고 Task를 부여받는 software oriented 형상으로 발전하고 있다. Cloud Robotics Platform은 로봇에 Service Oriented Architecture 형상을 지원하기 위한 방법으로, 상황에 따라 필요한 Task와 Motion Controller를 클라우드 기반으로 제공할 수 있는 방안이다. 휴머노이드 로봇으로 진화할수록 로봇은 로봇 3대 원칙에 따라 보편화된 일상생활 속에서 인간에게 도움을 주기 위해 사용될 것이다. 따라서 특정개인만을 위한 로봇 이외에도, 상황에 따라 모든 인간에게 도움을 줄 수 있는 공공재로써의 로봇이 보편화될 것이다. 따라서, 생성하는 정보는 사람, 로봇, 로봇에 지능을 부여하는 클라우드 상의 서비스 애플리케이션, 로봇과 클라우드를 이어주는 클라우드 브릿지로 구성될 것으로 분석되는 Cloud Robotics Computing 환경에서 정보보안의 중요성은 인간의 생명 및 안전을 위해 필수불가결한 요소로 자리잡게 될 것이다. 본 논문에서는 지능화된 로봇을 위한 Cloud Robotics Computing 환경에서 사람, 로봇, 클라우드 브릿지, 클라우드 시스템간 통신 시 보안을 제공하여 해킹으로부터 안전하고 개인의 정보가 보호되는 로봇 서비스가 가능할 수 있는 Security Scheme을 제안한다.

1
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기