논문 상세보기

한국수학교육학회> C-초등수학교육> 초등수학의 규칙성 영역 단원에 제시된 발문의 특성 분석

KCI등재

초등수학의 규칙성 영역 단원에 제시된 발문의 특성 분석

An Analysis of the Questions Presented in Chapters of Pattern Area in Elementary School Mathematics

도주원 ( Do¸ Joowon )
  • : 한국수학교육학회
  • : C-초등수학교육 24권4호
  • : 연속간행물
  • : 2021년 10월
  • : 189-202(14pages)
C-초등수학교육

DOI


목차

Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구 방법
Ⅳ. 연구 결과 및 논의
Ⅴ. 결론 및 제언
참 고 문 헌

키워드 보기


초록 보기

The teacher’s questions presented in the problem-solving situation stimulate students' mathematical thinking and lead them to find a solution to the given problem situation. In this research, the types and functions of questions presented in chapters of Pattern area of the 2015 revised elementary school mathematics textbooks were compared and analyzed by grade cluster. Through this, it was attempted to obtain implications for teaching and learning in identifying the characteristics of questions and effectively using the questions when teaching Pattern area. As a result of this research, as grade clsuter increased, the number of questions per lesson presented in Pattern area increased. Frequency of the types of questions in textbooks was found to be high in the order of reasoning questions, factual questions, and open questions in common by grade cluster. In chapters of Pattern area, relatively many questions were presented that serve as functions to help guess, invent, and solve problems or to help mathematical reasoning in the process of finding rules. It can be inferred that these types of questions and their functions are related to the learning content by grade cluster and characteristics of grade cluster. Therefore, the results of this research can contribute to providing a reference material for devising questions when teaching Pattern area and further to the development of teaching and learning in Pattern area.

UCI(KEPA)

I410-ECN-0102-2022-300-000897315

간행물정보

  • : 사회과학분야  > 교육
  • : KCI등재
  • :
  • : 계간
  • : 1226-6914
  • : 2287-9927
  • : 학술지
  • : 연속간행물
  • : 1997-2022
  • : 359


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

25권2호(2022년 04월) 수록논문
최근 권호 논문
| | | |

KCI등재

15, 6학년 수학 교사용 지도서의 도전 수학에 나타난 수학적 사고의 유형

저자 : 임영빈 ( Yim¸ Youngbin )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 25권 2호 발행 연도 : 2022 페이지 : pp. 143-160 (18 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 5, 6학년 수학 교사용 지도서의 도전 수학에 나타난 수학적 사고의 유형을 분석하여 교육적 시사점을 논하기 위하여 수행되었다. 이를 위하여 교수·학습 내용을 바탕으로 평가 및 육성이 가능한 수학적 사고의 유형을 정리하고, 수학적 사고를 분석하기 위한 틀을 구상한 뒤, 초등학교 5, 6학년 수학 교사용 지도서의 '도전 수학'에 나타나는 수학적 사고를 분석하였다. 분석 결과, 첫째, 우리나라 초등학교 5, 6학년 수학 교사용 지도서의 '도전 수학'은 계획 수립, 실행의 단계에서는 다양한 수학적 사고를 지도할 수 있는 여러 가지 유형의 문제로 구성이 되어있다. 다만 자세한 보조문항으로 인하여 의도된 수학적 사고만이 발현될 것이 우려되며, 스스로 수학적 사고를 유발할 수 있는지는 불분명한 경우가 많았다. 둘째, 교사용 지도서의 문제 이해 단계와 반성 단계의 발문이 매우 전형적으로 제시됨으로써 해당 단계에서는 다양한 수학적 사고를 유발하기 어렵다. 셋째, 교사용 지도서에는 수학적 사고에 대한 명시적 설명이 부족하며 추후 개발될 교사용 지도서에서는 수학적 사고에 대한 명시적 설명을 보완해주는 것이 필요할 것이다.


This study was conducted to discuss educational implications by analyzing the types of mathematical thinking that appeared in challenge math in 5th and 6th grade math teacher's guidebooks. To this end, mathematical thinking types that can be evaluated and nurtured based on teaching and learning contents were organized, a framework for analyzing mathematical thinking was devised, and mathematical thinking appearing in Challenge Math in the 5th and 6th grade math teachers' guidebooks was analyzed. As a result of the analysis, first, 'challenge mathematics' in the 5th and 6th grades of elementary school in Korea consists of various problems that can guide various mathematical thinking at the stage of planning and implementation. However, it is feared that only the intended mathematical thinking will be expressed due to detailed auxiliary questions, and it is unclear whether it can cause mathematical thinking on its own. Second, it is difficult to induce various mathematical thinking at that stage because the questionnaire of the teacher's guidebooks understanding stage and the questionnaire of the reflection stage are presented very typically. Third, the teacher's guidebooks lacks an explicit explanation of mathematical thinking, and it will be necessary to supplement the explicit explanation of mathematical thinking in the future teacher's guidebooks.

KCI등재

2이중 수사(數詞) 체계 지도에 대한 논의

저자 : 강윤지 ( Kang¸ Yunji )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 25권 2호 발행 연도 : 2022 페이지 : pp. 161-178 (18 pages)

다운로드

(기관인증 필요)

초록보기

우리나라는 고유어 수사와 한자어 수사로 구성된 이중 수사 체계를 사용하고 있다. 이러한 이중 수사 체계는 실생활에서 관습적으로 특정 방식이 선택되거나, 두 가지 방식이 혼용되기도 하고, 불규칙하게 변형되기에 수사 학습지도 과정에서 학생과 교사 양측의 부담이 가중된다. 이에 본 연구는 이중 수사 체계로 인한 학습 지도 난점 개선의 필요성을 인지하였다. 이를 위하여 수사 체계 방식이 선택되는 맥락과 다양한 변형 사례, 현행 교육과정과 교과서의 관련 지도 내용을 분석·정리하였다. 분석 결과, 수사를 사용하는 실제 상황에 따라 나타나는 수사 체계 방식의 선택 및 변형의 특징이 존재하였으나 그러한 특징의 기준이 모호하고 교육과정 및 교과서 내 구체적인 지도 지침 또한 부재하였다. 이 경우 현장 교사의 역할이 더욱 중시되기 때문에 교사는 이중 수사 체계 관련 실제 상황의 세부특징을 인지하고 학생에게는 이중 수사 체계 사용의 다양한 측면에 대한 경험과 연습을 통하여 이해하게 만듦으로써 수사 체계 교수·학습 개선을 위한 방향을 논의하였다.


Korean uses a dual numeral system consisting of native and Chinese words. This dual numerical system is customarily selected in real life, mixed with two methods, or irregularly transformed. Therefore, the burden on both students and teachers is increased in the learning guidance process of numeral. This study recognized the need to improve the difficulty of learning guidance due to the dual numeral system. To this end, the context in which the numeral system method is selected, various modified cases, and related guidance contents of the current curriculum and textbooks were analyzed and organized. As a result of the analysis, there were characteristics of the selection and deformation of the numeral system method, which appears according to the actual situation using numerical. However, the criteria for characteristics were ambiguous and there were no specific guidance guidelines in the curriculum and textbooks. In this case, since the role of the teacher is more important, the teacher should be aware of the detailed characteristics of the actual situation related to the dual numeral system and let the student understand through experience and practice on various aspects of the use of the dual numeral system.

KCI등재

3분수의 나눗셈에 대한 초등학생의 수학적 의사소통 능력 분석

저자 : 방정숙 ( Pang Jeong Suk ) , 김윤영 ( Kim Yoon Young ) , 선우진 ( Sunwoo Jin )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 25권 2호 발행 연도 : 2022 페이지 : pp. 179-195 (17 pages)

다운로드

(기관인증 필요)

초록보기

2015 개정 수학과 교육과정에서 제시하는 수학 교과역량 중 의사소통 능력은 학생들의 수학 학습을 위한 수단이자 목표로서 중요한 역할을 한다. 이에 수학을 가르칠 때 학생들의 의사소통 능력을 신장하기 위한 방안을 모색하고 실제 학생들의 의사소통 능력을 면밀히 분석하는 것은 의미 있는 일이다. 이러한 필요성에 따라 본 연구에서는 초등학교 6학년 학생들을 대상으로 분수의 나눗셈에 초점을 둔 의사소통 능력을 조사하여 그 결과를 분석하였다. 이를 위해 의사소통 능력의 네 가지 하위요소(수학적 표현의 이해, 수학적 표현의 개발 및 변환, 자신의 생각 표현, 타인의 생각 이해)에 따라 검사지를 개발했다. 연구 결과, 학생들은 분수의 나눗셈의 원리를 다양한 수학적 표현으로 이해하고 나타낼 수 있었다. 학생들은 수학적 표현의 개발 및 변환, 자신의 생각 표현 측면에서 수학적 아이디어를 시각적 모델로 표현하는 것보다 수식으로 표현하고 해결하는 데 능숙했으며, 자신의 생각을 표현하거나 타인의 생각에 대해 반응할 때 수학 용어나 기호 등을 적절하게 사용하였다. 연구 결과를 바탕으로 수학 교과 역량으로서의 의사소통 능력을 함양하기 위한 지도 방안에 대한 시사점을 논의하였다.


Mathematical communication competency, one of the six mathematical competencies emphasized in the latest mathematics curriculum, plays an important role both as a means and as a goal for students to learn mathematics. Therefore, it is meaningful to find instructional methods to improve students' mathematical communication competency and analyze their communication competency in detail. Given this background, this study analyzed 64 sixth graders' mathematical communication competency after they participated in the lessons of fraction division emphasizing mathematical communication. A written assessment for this study was developed with a focus on the four sub-elements of mathematical communication (i.e., understanding mathematical representations, developing and transforming mathematical representations, representing one's ideas, and understanding others' ideas). The results of this study showed that students could understand and represent the principle of fraction division in various mathematical representations. The students were more proficient in representing their ideas with mathematical expressions and solving them than doing with visual models. They could use appropriate mathematical terms and symbols in representing their ideas and understanding others' ideas. This paper closes with some implications on how to foster students' mathematical communication competency while teaching elementary mathematics.

KCI등재

4자연수 뺄셈의 실생활 맥락 문제 상황에 대한 초등교사의 인식

저자 : 도주원 ( Do¸ Joowon )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 25권 2호 발행 연도 : 2022 페이지 : pp. 197-211 (15 pages)

다운로드

(기관인증 필요)

초록보기

본 연구의 목적은 자연수 뺄셈의 실생활 맥락 문제 상황에서 '큰 수'와 '작은 수'의 제시 순서와 관련한 교수학적 의사결정의 관례에 대한 개선 방안을 모색하는 것이다. 이를 위하여 수학 교과 전문성을 가지고 있는 초등교사 30명을 대상으로 자연수 뺄셈의 실생활 문제 상황에 등장하는 크고 작은 두 수의 제시 순서와 뺄셈 상황에 대한 교수학적 인식을 조사하였다. 설문 조사를 통해 수집한 자료는 뺄셈의 문제 상황 유형을 분석 기준으로 활용하여 양적, 질적 분석을 하였다. 연구 결과, 뺄셈에 대한 학생들의 사고의 폭을 넓힐 수 있도록 실제 상황의 크고 작은 두 수의 제시 순서를 유지하는 뺄셈의 실생활 맥락 문제상황을 활용하여 지도할 필요가 있다. 그리고 다양한 실생활 기반의 뺄셈 문제해결 학습이 이루어질 수 있도록 '큰 수'를 먼저, '작은 수'를 나중에 생각해야 하는 문제 상황으로 변형시키는 관례적인 교수학적 조치에 대한 제고가 필요하다. 이를 위해서는 자연수 뺄셈 지도 시 '큰 수'를 먼저, '작은 수'를 나중에 생각해야 하는 뺄셈 문제 상황뿐만 아니라 실생활에서 종종 등장하는 '작은 수'를 먼저, '큰 수'를 나중에 생각하게 되는 뺄셈의 실생활 맥락 문제상황 도입에 대한 필요성을 교사가 인식하고 이에 대한 교수학적 견해를 갖출 수 있도록 수업 반성 및 연찬의 기회를 제공해야 할 것이다.


In this study, we tried to find a way to improve the pedagogical decision-making practices related to the presentation order of 'large number' and 'small number' in problem situations of subtraction of the natural number. For this purpose, the elementary school teachers' perception about problem situations in real-life context of subtraction of natural numbers was investigated, and the collected data were analyzed qualitatively and quantitatively to identify teachers' pedagogical perceptions. As a result of this study, it was confirmed the need for consideration on how to set up a problem situations in real-life context of subtraction so that students can develop their ability to solve various types of problems. To this end, not only in a problem situation of subtraction where you have to think of 'large number' first and 'small number' later, but also about the introduction of problem situations in real-life context of subtraction in which you think about 'small number' first and 'large number' later, which often appears in real-life. You will need to recognize the need. And you should have a pedagogical view on this. The results of this study will be able to contribute to the preparation of pedagogical method that can expand the understanding of various problem situations where subtraction is applied from the lower grades of elementary school.

1
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1다전략 수학 문제해결 학습이 초등학생의 수학적 창의성과 수학적 태도에 미치는 영향

저자 : 김서령 ( Kim¸ Seoryeong ) , 박만구 ( Park¸ Mangoo )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 24권 4호 발행 연도 : 2021 페이지 : pp. 175-187 (13 pages)

다운로드

(기관인증 필요)

초록보기

The purpose of this study is to investigate the effects of solving multi-strategic mathematics problems on mathematical creativity and attitudes of the 6th grade students. For this study, the researchers conducted a survey of forty nine (26 students in experimental group and 23 students in comparative group) 6th graders of S elementary school in Seoul with 19 lessons. The experimental group solved the multi-strategic mathematics problems after learning mathematics through mathematical strategies, whereas the group of comparative students were taught general mathematics problem solving. The researchers conducted pre- and post- isomorphic mathematical creativity and mathematical attitudes of students. They examined the t-test between the pre- and post- scores of sub-elements of fluency, flexibility and creativity and attitudes of the students by the i-STATistics. The researchers obtained the following conclusions. First, solving multi-strategic mathematics problems has a positive impact on mathematical creativity of the students. After learning solving the multi-strategic mathematics problems, the scores of mathematical creativity of the 6th grade elementary students were increased. Second, learning solving the multi-strategy mathematics problems impact the interest, value, will and efficacy factors in the mathematical attitudes of the students. However, no significant effect was found in the areas of desire for recognition and motivation. The researchers suggested that, by expanding the academic year and the number of people in the study, it is necessary to verify how mathematics learning through multi-strategic mathematics problem-solving affects mathematical creativity and mathematical attitudes, and to verify the effectiveness through long-term research, including qualitative research methods such as in-depth interviews and observations of students' solving problems.

KCI등재

2초등수학의 규칙성 영역 단원에 제시된 발문의 특성 분석

저자 : 도주원 ( Do¸ Joowon )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 24권 4호 발행 연도 : 2021 페이지 : pp. 189-202 (14 pages)

다운로드

(기관인증 필요)

초록보기

The teacher's questions presented in the problem-solving situation stimulate students' mathematical thinking and lead them to find a solution to the given problem situation. In this research, the types and functions of questions presented in chapters of Pattern area of the 2015 revised elementary school mathematics textbooks were compared and analyzed by grade cluster. Through this, it was attempted to obtain implications for teaching and learning in identifying the characteristics of questions and effectively using the questions when teaching Pattern area. As a result of this research, as grade clsuter increased, the number of questions per lesson presented in Pattern area increased. Frequency of the types of questions in textbooks was found to be high in the order of reasoning questions, factual questions, and open questions in common by grade cluster. In chapters of Pattern area, relatively many questions were presented that serve as functions to help guess, invent, and solve problems or to help mathematical reasoning in the process of finding rules. It can be inferred that these types of questions and their functions are related to the learning content by grade cluster and characteristics of grade cluster. Therefore, the results of this research can contribute to providing a reference material for devising questions when teaching Pattern area and further to the development of teaching and learning in Pattern area.

KCI등재

3경과시간 수업에서 제공되는 학습기회 분석: 양적 대상화를 중심으로

저자 : 한채린 ( Han¸ Chaereen )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 24권 4호 발행 연도 : 2021 페이지 : pp. 203-216 (14 pages)

다운로드

(기관인증 필요)

초록보기

Seeing the elapsed time as a quantity that can be measured is quite challenging for students while making students see it is also challenging for teachers. Tuning on these challenges, this article reports on what learning opportunities elementary teachers provide when they teach elapsed time focusing on quantitative objectification. I observed three mathematics classrooms where the elapsed time was taught by three elementary teachers and did a narrative analysis on the instructions. All three teachers utilized certain tools to support students access to the elapsed time as a quantity. They appropriated various quantitative attributes of the tool. In the case of the analog clock, one teacher tried to quantification the elapsed time with the number of minute hand's turning, while the other teacher indicated the distance of minute hand's moving. One teacher represented the elapsed time with the longitudinal attribute of the time band. Standing on the findings, the didactical implications of various attempts for quantitative objectification of the elapsed time implemented were discussed.

KCI등재

4EBSmath를 활용한 거꾸로 수업이 수학 학습과 수학적 성향에 미치는 영향

저자 : 오혜진 ( Oh¸ Hyejin ) , 박성선 ( Park¸ Sungsun )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 24권 4호 발행 연도 : 2021 페이지 : pp. 217-231 (15 pages)

다운로드

(기관인증 필요)

초록보기

The purpose of this study was to investigate the effects of flipped learning through EBSmath on Students' 'rate and ratio' learning. By increasing demands for change in education, an innovative teaching and learning paradigm, 'Flipped Learning', has been presented and drawing attentions. In South Korea, Flipped Learning is also highly recognized for its effectiveness by many scholars and various media. However, this innovative learning model has limitations in application and expansion due to the excessive burden of class preparation of teachers.
As remote learning becomes more active, it would be possible to overcome the limitations of Filliped learning by using the platform provided by the Korea Educational Broadcasting System (EBS). EBSmath is an online learning module that is designed to assist students' self-directed learning. Thus, EBSmath would reduce teachers' burden to prepare mathematics classes for the application of Flipped Learning; and led to students' better understanding of mathematical concepts and problem solving.
In this study, the effect of Flipped Learning through EBSmath on learning 'rate and ratio' was investigated. In order to scrutinize the effects of flipped learning, students' achievement and mathematical disposition were examined and analyzed. Students' achievement, specifically, was divided into two subcategories: concept understanding and problem solving.
As a result, Flipped learning through EBSmath had a positive effect on students' 'rate and ratio' problem solving. In addition, a statistically significant change was identified in the 'willingness', which is subdomain of students' mathematical disposition.

KCI등재

5평면도형의 교수·학습 요소에 따른 삼각형에 관한 초등학교 교과서 분석

저자 : 권미선 ( Kwon¸ Misun )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 24권 4호 발행 연도 : 2021 페이지 : pp. 233-246 (14 pages)

다운로드

(기관인증 필요)

초록보기

Two-dimensional shapes have a great influence on elementary school students' learning and are closely related to other content areas. Therefore, in this study, The Teaching and Learning Elements that should be taught in two-dimensional shapes were extracted from the literature. It also was analyzed that revised mathematics textbooks in the year 2015 were properly implemented with the teaching and learning elements. As a result of the analysis, in the case of Understanding The Concept, the activities in the textbooks are not able to recognize 2-D shapes which are focusing on shapes of the actual object. In the case of Classifying two-dimensional shapes according to the Criteria, the classification criteria were presented differently from what was learned in the previous course. In the aspect of Applying the Concept, the activities in order to Discuss two-dimensional shapes were not sufficient. Lastly, in view of the fact the 2015 revised curriculum is not considered with the relationship between two-dimensional shapes. For that reason, the following Knowing Relationships parts are insufficiently presented; Understanding the Relationship Between shapes through Definitions and Properties, Identifying the relationship between shapes throughout classification activities, and Discussing the relationship between shapes. Based on the analysis result of two-dimensional shapes, it is suggested that the finding of this research helps to enlarge the teaching methodology of triangles and provide educational perspectives for development in other shape areas.

KCI등재

6Dienes의 수학학습이론에 따른 사다리꼴의 넓이 학습에서 학생들이 구성한 예 공간 분석

저자 : 오민영 ( Oh¸ Min Young ) , 김남균 ( Kim¸ Nam Gyun )

발행기관 : 한국수학교육학회 간행물 : C-초등수학교육 24권 4호 발행 연도 : 2021 페이지 : pp. 247-264 (18 pages)

다운로드

(기관인증 필요)

초록보기

The area of a trapezoid is an important concept to develop mathematical thinking and competency, but many students tend to understand the formula for the area of a trapezoid instrumentally. A clue to solving these problems could be found in Dienes' theory of learning mathematics and Watson and Mason' concept of example spaces. The purpose of this study is to obtain implications for the teaching and learning of the area of the trapezoid. This study analyzed the example spaces constructed by students in learning the area of a trapezoid based on Dienes' theory of learning mathematics. As a result of the analysis, the example spaces for each stage of math learning constructed by the students were a trapezoidal variation example spaces in the play stage, a common representation example spaces in the comparison-representation stage, and a trapezoidal area formula example spaces in the symbolization-formalization stage. The type, generation, extent, and relevance of examples constituting example spaces were analyzed, and the structure of the example spaces was presented as a map. This study also analyzed general examples, special examples, conventional examples of example spaces, and discussed how to utilize examples and example spaces in teaching and learning the area of a trapezoid. Through this study, it was found that it is appropriate to apply Dienes' theory of learning mathematics to learning the are of a trapezoid, and this study can be a model for learning the area of the trapezoid.

1
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기