논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> 무인기 기반 다중분광 영상을 이용한 벼 쓰러짐 영역의 특성 분석

KCI등재

무인기 기반 다중분광 영상을 이용한 벼 쓰러짐 영역의 특성 분석

Comparative Analysis of Rice Lodging Area Using a UAV-based Multispectral Imagery

문현동 ( Hyun-dong Moon ) , 류재현 ( Jae-hyun Ryu ) , 나상일 ( Sang-il Na ) , 장선웅 ( Seon Woong Jang ) , 신서호 ( Seo-ho Sin ) , 조재일 ( Jaeil Cho )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 37권5호
  • : 연속간행물
  • : 2021년 10월
  • : 917-926(10pages)
대한원격탐사학회지

DOI


목차

1. 서론
2. 방법
3. 결과
4. 고찰 및 결론
사사
References

키워드 보기


초록 보기

벼 쓰러짐은 벼농사의 대표적인 기상재해 피해로써 강한 바람과 강우로 발생한다. 원격탐사 기법은 넓은 지역의 벼 쓰러짐을 효과적으로 탐지하기에 적절한 방법이다. 실제로 벼 쓰러짐은 벼 키가 최대인 생육 시기에 주로 발생하여 군락의 큰 구조적 변화를 불러오기 때문에 분광 반사도 차이를 야기한다. 따라서, 본고에서는 나주에 위치한 전남농업기술원의 2020년 태풍에 의한 논벼 피해를 444 nm부터 842 nm까지 10개 밴드로 구성된 카메라 영상으로 분석하였다. 드론 영상마다 벼 쓰러짐 피해를 받은 영역과 벼 쓰러짐 피해가 없는 영역으로 구분하여 벼 쓰러짐 영역의 분광 반사도 특성 차이와 식생 탐지에 주로 사용되는 식생지수인 NDVI (Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge), CCI (Chlorophyll Carotenoid Index)의 변화를 살펴보았다. 반사도 값의 변화는 밴드6(668 nm)에서 가장 적었으며, 이를 중심으로 밴드 파장이 감소와 증가할수록 일반 논벼 보다 쓰러짐 영역 반사도가 커졌다. 또한, 쓰러진 벼를 묶어 세운 복구 지역은 대부분의 밴드에 걸쳐 반사도가 크게 감소함을 볼 수 있었다. NDVI와 NDRE는 벼 쓰러짐 영역에 대해 민감하게 반응하였으나, 그 반응 대상 및 정도는 서로 달랐다. 본 연구의 결과는 향후 드론과 위성을 이용한 벼 쓰러짐 피해 조사 알고리즘에 기여될 것으로 기대한다.
Lodging rice is one of critical agro-meteorological disasters. In this study, the UAV-based multispectral imageries before and after rice lodging in rice paddy field of Jeollanamdo agricultural research and extension services in 2020 was analyzed. The UAV imagery on 14th Aug. includes the paddy rice without any damage. However, 4th and 19th Sep. showed the area of rice lodging. Multispectral camera of 10 bands from 444 nm to 842 nm was used. At the area of restoration work against lodging rice, the reflectance from 531 nm to 842 nm were decreased in comparison to un-lodging rice. At the area of lodging rice, the reflectance of around 668 nm had small increases. Further, the blue and NIR (Near-Infrared) wavelength had larger. However, according to the types of lodging, the change of reflectance was different. The NDVI (Normalized Difference Vegetation Index) and NDRE (Normalized Difference Red Edge) shows dome sensitivities to lodging rice, but they were different to types of lodging. These results will be useful to make algorithm to detect the area of lodging rice using a UAV.

UCI(KEPA)

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2021
  • : 1739


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

37권6호(2021년 12월) 수록논문
최근 권호 논문
| | | |

KCI등재

1복사전달모델을 이용한 GEMS 일산화브로민 산출 민감도 시험

저자 : 정희성 ( Heesung Chong ) , 김준 ( Jhoon Kim ) , 정욱교 ( Ukkyo Jeong ) , 박상서 ( Sang Seo Park ) , 홍재민 ( Jaemin Hong ) , 안다현 ( Dha Hyun Ahn ) , 차혜지 ( Hyeji Cha ) , 이원진 ( Won-jin Lee ) , 이혜정 ( Hae-jung Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1491-1506 (16 pages)

다운로드

(기관인증 필요)

초록보기

GEMS의 복사 실측 자료로부터 일산화브로민(BrO) 전량 농도를 산출하기에 앞서, 복사전달모델로부터 생성된 모의자료를 이용하여 민감도 시험을 수행하였다. 산출 오차가 갖는 월간 및 일내 변동성을 고려하기 위해, 2013년 7월-2014년 6월 기간 매달 첫째 날의 00-07 UTC에 대해 한 시간 간격의 모의자료를 구성하였다. 최적추정법을 통해 계산된 산출물의 해답 오차는 대기질량인자 증가에 따라 감소하는 반비례 경향을 주로 보였지만, 대기질량인자 값이 5 이상으로 크게 나타나는 범위에서는 비례 경향을 보였다. BrO와 포름알데히드(HCHO) 흡수선 간의 중첩으로 인해 발생하는 BrO 산출물의 간섭 오차는 BrO의 대기질량인자가 작을수록 크게 나타났다. 해답 오차와 간섭 오차의 추정치를 결합하여 계산한 산출물 최종 오차의 평균값은 모든 데이터 샘플에 대해 26.74±30.18%로, 80° 이상의 태양천정각을 갖는 샘플에 대해 60.39±133.78%로 나타났다. 본 연구에서 고려되지 않은 간섭 스펙트럼 및 복사 측정의 오차로 인해, 실제 GEMS의 BrO 산출물이 갖게 될 오차는 추정치와 절대값의 차이를 나타낼 가능성이 있다. 그러나 본 연구에서 제시한 오차 요소들의 변동 특성들은 실제 산출물에서도 나타날 것이다.


To estimate errors in GEMS retrievals for bromine monoxide (BrO) total vertical column densities (VCDs), we perform a sensitivity test using synthetic spectra generated by a radiative transfer model. Hourly synthetic data are produced for 00-07 UTC on the first day of every month in Jul 2013- Jun 2014. Solution errors estimated by the optimal estimation method tend to decrease with increasing air mass factors (AMFs) but increase when AMFs are larger than 5. Interference errors induced by formaldehyde (HCHO) absorption appear to be larger with smaller BrO AMFs. Total BrO retrieval errors estimated by combining solution and interference errors show an average of 26.74±30.18% for all data samples and 60.39±133.78% for those with solar zenith angles higher than 80°. Due to interfering spectral features and measurement errors not considered in this study, errors in BrO retrievals from actual GEMS measurements may have different magnitudes from our estimates. However, the variability of errors assessed in this study is still expected to appear in the actual BrO retrievals.

KCI등재

2GOCI Chlorophyll-a 결측 자료의 복원을 위한 DINEOF 방법 적용

저자 : 황도현 ( Do-hyun Hwang ) , 정한철 ( Hahn Chul Jung ) , 안재현 ( Jae-hyun Ahn ) , 최종국 ( Jong-kuk Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1507-1515 (9 pages)

다운로드

(기관인증 필요)

초록보기

해색 원격 탐사를 통해 chlorophyll-a를 추정하면 식물성 플랑크톤, 해양일차생산력의 전 지구적 분포를 파악할 수 있다. 하지만 위성으로 관측된 해색 자료는 구름이나 기상 상황 등에 의하여 결측 데이터가 발생한다. 본 연구에서는DINEOF를 이용하여GOCI chlorophyll-a 산출물의 결측 자료를 복원하고자 하였다. DINEOF는 시·공간 자료에 기반을 두어 결측 자료를 복원하는 방법으로, 정확도는 GOCI chlorophyll-a 영상의 일부를 제거한 뒤 복원 영상과 비교하여 교차 검증하였다. 연구지역에서DINEOF를 위한 최적의 EOF 모드는 10-13이었다. 시·공간 복원 자료 결과에서는 오후 시간대 chlorophyll-a 농도가 증가하는 경향이 반영되었고, 노이즈에 해당되는 이상치는 필터링 되는 효과를 보였다. 따라서 DINEOF는 결측이 발생한 영상에 대하여 복원 자료로 활용 가능할 것으로 보이며, 이를 통해 해양 환경 모니터링을 위한 기초 자료로 사용 가능할 것으로 판단된다.


If chlorophyll-a is estimated through ocean color remote sensing, it is able to understand the global distribution of phytoplankton and primary production. However, there are missing data in the ocean color observed from the satellites due to the clouds or weather conditions. In this study, the missing data of the GOCI (Geostationary Ocean Color Imager) chlorophyll-a product was reconstructed by using DINEOF (Data INterpolation Empirical Orthogonal Functions). DINEOF reconstructs the missing data based on spatio-temporal data, and the accuracy was cross-verified by removing a part of the GOCI chlorophyll-a image and comparing it with the reconstructed image. In the study area, the optimal EOF (Empirical Orthogonal Functions) mode for DINEOF was in 10-13. The temporal and spatial reconstructed data reflected the increasing chlorophyll-a concentration in the afternoon, and the noise of outliers was filtered. Therefore, it is expected that DINEOF is useful to reconstruct the missing images, also it is considered that it is able to use as basic data for monitoring the ocean environment.

KCI등재

3농림위성용 GCP 칩 매칭 성능 향상을 위한 위성영상 공간해상도 결정

저자 : 이유진 ( Yoojin Lee ) , 김태정 ( Taejung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1517-1526 (10 pages)

다운로드

(기관인증 필요)

초록보기

최근 국내외에서 많은 지구관측위성들이 발사됨에 따라서 위성영상의 활용 분야가 넓어지고 있고 이에 따라서 위성영상의 기하정확도 향상을 위한 연구가 활발히 수행되고 있다. 본 논문은 2025년에 발사예정인 5 m 해상도 영상을 촬영할 수 있는 농림위성을 위한 자동기준점 추출 가능성을 파악하기 위해서 수행되었다. 특히 본 연구에서는 국토위성용으로 구축된 25 cm 해상도의 지상기준점 Chip을 농림위성영상에 사용할 수 있는지를 검토하고 농림위성영상용 지상기준점 추출 시 정합 성능 향상을 위한 적절한 공간해상도가 있는지를 검토하고자 한다. 실제 실험은 농림위성영상과 유사한 사양을 가진 RapidEye 위성영상을 활용하여 연구를 수행하였다. 먼저, 5 m 해상도의 원본 RapidEye 영상을 3배~7배로 분할하여 여러 해상도를 가진 영상으로 만들고, 해상도를 가지는 지상기준점 Chip은 크기를 축소하여 위성영상의 해상도에 맞게 조절하였다. 각각의 해상도를 가지는 위성영상과 지상기준점 Chip을 매칭하고 이 결과로 수립된 정밀센서모델의 정확도를 분석하였다. 분석결과 5 m의 원본 해상도에서 정합하는 것보다 위성영상의 해상도를 높여서 정합하는 것이 개선된 정확도를 보여주었다. 특히, 원본 영상을 1.25~1.67 m 해상도로 분할하여 지상기준점 Chip과 정합 할 경우 평균 약 2.74 m 내외의 위치정확도를 얻을 수 있었다. 본 연구결과가 향후 농림위성영상의 자동기준점 추출 및 정밀 정사영상 생산에 활용될 수 있을 것으로 기대한다.


With the recent global and domestic development of Earth observation satellites, the applications of satellite images have been widened. Research for improving the geometric accuracy of satellite images is being actively carried out. This paper studies the possibility of automated ground control point (GCP) generation for CAS-4 satellite, to be launched in 2025 with the capability of image acquisition at 5 m ground sampling distance (GSD). In particular, this paper focuses to check whether GCP chips with 25 cm GSD established for CAS-1 satellite images can be used for CAS-4 and to check whether optimal spatial resolution for matching between CAS-4 images and GCP chips can be determined to improve matching performance. Experiments were carried out using RapidEye images, which have similar GSD to CAS-4. Original satellite images were upsampled to make satellite images with smaller GSDs. At each GSD level, up-sampled satellite images were matched against GCP chips and precision sensor models were estimated. Results shows that the accuracy of sensor models were improved with images at smaller GSD compared to the sensor model accuracy established with original images. At 1.25~1.67 m GSD, the accuracy of about 2.4 m was achieved. This finding lead that the possibility of automated GCP extraction and precision ortho-image generation for CAS-4 with improved accuracy.

KCI등재

4포인트 클라우드 데이터 기반 군집형 건물 솔리드 모델 자동 생성 기법과 모델 편집 기능 평가

저자 : 김한결 ( Han-gyeol Kim ) , 임평채 ( Pyung-chae Lim ) , 황윤혁 ( Yunhyuk Hwang ) , 김동하 ( Dong Ha Kim ) , 김태정 ( Taejung Kim ) , 이수암 ( Sooahm Rhee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1527-1543 (17 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 포인트 클라우드 데이터를 기반으로 자동으로 군집형 솔리드 건물 모델을 생성하는 기술을 다양한 데이터에 적용, 실험을 수행하여 적용 가능성과 효용성을 탐색한다. 또한 자동 건물 모델링 기술의 한계로 인해 부족한 모델의 품질을 향상시키기 위하여 건물의 형상 편집 및 텍스처 조정 기술을 개발, 실험을 통해 결과를 확인하였다. 자동 건물 모델 생성 기술의 적용 가능성 탐색을 위하여 무인항공기 영상 기반으로 생성된 포인트 클라우드와 LiDAR(Light Detection and Ranging) 자료를 사용해 실험하였으며, 자동으로 생성된 건물 모델에 건물 형상 편집 및 텍스처 조정 기술을 적용하여 모델의 품질의 향상 실험을 수행하였다. 이를 통해 포인트 클라우드 데이터 기반의 자동 군집형 솔리드 건물 모델링 기술의 적용 가능성과 모델의 품질 향상 기술의 효용성을 확인하였다. 개발된 기술은 기존의 건물 모델링 기술과 비교하여 처리시간의 비용이 크게 감소하며, 잦은 모델 갱신이 필요한 지역에 대한 관리 측면에서도 강점이 있을 것으로 기대된다.


In this paper, we explore the applicability and utility of a technology that generating clustered solid building models based on point cloud automatically by applying it to various data. In order to improve the quality of the model of insufficient quality due to the limitations of the automatic building modeling technology, we develop the building shape modification and texture correction technology and confirmed the results through experiments. In order to explore the applicability of automatic building model generation technology, we experimented using point cloud and LiDAR (Light Detection and Ranging) data generated based on UAV, and applied building shape modification and texture correction technology to the automatically generated building model. Then, experiments were performed to improve the quality of the model. Through this, the applicability of the point cloud data-based automatic clustered solid building model generation technology and the effectiveness of the model quality improvement technology were confirmed. Compared to the existing building modeling technology, our technology greatly reduces costs such as manpower and time and is expected to have strengths in the management of modeling results.

KCI등재

5논과 고랭지 배추밭 대상 Sentinel-2A/B 정규식생지수 월 합성영상의 구름 제거 효과 분석

저자 : 은정 ( Jeong Eun ) , 김선화 ( Sun-hwa Kim ) , 김태호 ( Taeho Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1545-1557 (13 pages)

다운로드

(기관인증 필요)

초록보기

농작물은 그 종과 생육상태에 따라 민감한 분광특성을 나타내며, 특히 여름철에 집중적으로 관측이 필요하나 장마로 인해 광학위성의 활용이 어렵다. 이 문제를 해결하기 위해 CC-MNC(Constrained Cloud-Maximum NDVI Composite) 기법이 개발되었으며, 이 기법을 통해 구름의 영향이 최소화된 일정 주기의 대표 합성영상이 생성된다. 본 연구에서도 이 기법을 이용하여, 2019년부터 2021년까지 논과 고랭지 배추밭을 대상으로 Sentinel-2A/B NDVI 월합성영상을 제작하였다. 다른 해보다 200 mm 많은 강수량을 보이는 2020년 8월에는 16일 주기 MODIS NDVI합성영상에서도 구름의 영향이 크게 나타났다. 이 시기를 제외하고 CC-MNC 기법은 평균적으로 원영상의 45.4%의 구름 비율을 14.9%로 줄일 수 있었다. 논의 경우 Sentinel-2A/B와 MODIS NDVI 값이 큰 차이가 나지 않았으며, 5일의 주기로도 벼의 생육 주기를 잘 모니터링할 수 있었다. 고랭지 배추밭의 경우, Sentinel-2A/B에서는 고랭지 배추의 짧은 생육 주기가 잘 나타났지만, MODIS는 공간해상도의 한계를 보였다. 이와 함께 CC-MNC 기법은 수확 시기에 구름 화소가 합성에 사용되는 현상이 보이기도 하였으며, 국내 지역에 맞게 VZA 임계치의 조정이 필요하다는 시사점이 도출되었다.


Crops show sensitive spectral characteristics according to their species and growth conditions and although frequent observation is required especially in summer, it is difficult to utilize optical satellite images due to the rainy season. To solve this problem, Constrained Cloud-Maximum Normalized difference vegetation index Composite (CC-MNC) algorithm was developed to generate periodic composite images with minimal cloud effect. In this study, using this method, monthly Sentinel-2A/B Normalized Difference Vegetation Index (NDVI) composite images were produced for paddies and high-latitude cabbage fields from 2019 to 2021. In August 2020, which received 200mm more precipitation than other periods, the effect of clouds, was also significant in MODIS NDVI 16-day composite product. Except for this period, the CC-MNC method was able to reduce the cloud ratio of 45.4% of the original daily image to 14.9%. In the case of rice paddy, there was no significant difference between Sentinel-2A/B and MODIS NDVI values. In addition, it was possible to monitor the rice growth cycle well even with a revisit cycle 5 days. In the case of high-latitude cabbage fields, Sentinel-2A/B showed the short growth cycle of cabbage well, but MODIS showed limitations in spatial resolution. In addition, the CC-MNC method showed that cloud pixels were used for compositing at the harvest time, suggesting that the View Zenith Angle (VZA) threshold needs to be adjusted according to the domestic region.

KCI등재

6마늘의 제초제 약해에 대한 구조적, 생화학적, 생리적 계열 식생지수 반응: 지상분광계 및 다중분광카메라를 활용하여

저자 : 류재현 ( Jae-hyun Ryu ) , 문현동 ( Hyun-dong Moon ) , 조재일 ( Jaeil Cho ) , 이경도 ( Kyung-do Lee ) , 안호용 ( Ho-yong Ahn ) , 소규호 ( Kyu-ho So ) , 나상일 ( Sang-il Na )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1559-1572 (14 pages)

다운로드

(기관인증 필요)

초록보기

다중분광카메라의 기술 개발로 인해 구조적 특성뿐만 아니라 생화학적, 생리적 특성을 가지는 식생지수를 다양한 공간 규모에서 활용할 수 있게 되었다. 이에 본 연구는 스트레스를 받은 노지작물을 대상으로 지상 초분광계 및 무인기 영상 기반 구조적, 생화학적, 생리적 계열의 식생지수 반응을 평가하였다. 마늘을 대상으로 서로 다른 생육시기에 고농도의 제초제를 살포하여 약해 처리하였으며, 정상 생육에 비해 지상부 건물중이 46.9~84.5% 감소하는 등 큰 피해가 나타났다. 제초제를 살포한 처리구에서 근적외선 분광반사도 값은 꾸준하게 감소하였으며, 구조적 식생지수에서 작물의 약해 피해가 명확하게 표현되었다. 생화학적 식생지수의 경우 일부 지수를 제외하고는 작물의 피해 상태를 표현하였으나 생리적 식생지수는 잎이 고사하고 드러나는 멀칭비닐의 영향으로 약해 피해를 해석하기에 어려움이 있었다. 제초제 살포 후 서로 다른 공간 규모에서 관측된 식생지수의 감소율 차이는 구조적 식생지수의 경우 평균적으로 2.3%로 나타났으며, 정규화 식생지수의 경우 1.3~4.1%의 분포를 보였다. 비록 생리적 식생지수가 작물 스트레스에 민감하다고 알려졌지만, 노지작물의 경우 작물 스트레스 종류와 재배 환경에 따라 적합한 식생지수를 활용하여야 한다는 것, 공간 규모에 따른 오차를 최소화하기 위해서는 정규화 식생지수를 활용해야 한다는 것을 확인하였다.


The response of vegetation under the crop stress condition was evaluated using structural, biochemical, and physiological vegetation indices based on unmanned aerial vehicle (UAV) images and field-spectrometer data. A high concentration of herbicide was sprayed at the different growth stages of garlic to process crop stress, the above ground dry matter of garlic at experimental area (EA) decreased about 46.2~84.5% compared to that at control area. The structural vegetation indices clearly responded to these crop damages. Spectral reflectance at near-infrared wavelength consistently decreased at EA. Most biochemical vegetation indices reflected the crop stress conditions, but the meaning of physiological vegetation indices is not clear due to the effect of vinyl mulching. The difference of the decreasing ratio of vegetation indices after the herbicide spray was 2.3% averagely in the case of structural vegetation indices and 1.3~4.1% in the case of normalization-based vegetation indices. These results meant that appropriate vegetation indices should be utilized depending on the types of crop stress and the cultivation environment and the normalization-based vegetation indices measured from the different spatial scale has the minimized difference.

KCI등재

7드론 영상으로부터 월동 작물 분류를 위한 의미론적 분할 딥러닝 모델 학습 최적 공간 해상도와 영상 크기 선정

저자 : 정동기 ( Dongki Chung ) , 이임평 ( Impyeong Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1573-1587 (15 pages)

다운로드

(기관인증 필요)

초록보기

드론 영상은 위성이나 항공 영상보다 공간 해상도가 수배 혹은 수십 배가 높은 초고해상도 영상이다. 따라서 드론 영상 기반의 원격탐사는 영상에서 추출하고자 하는 객체의 수준과 처리해야 하는 데이터의 양이 전통적인 원격탐사와 다른 양상을 보인다. 또한, 적용되는 딥러닝(deep learning) 모델의 특성에 따라 모델 훈련에 사용되는 최적의 데이터의 축척과 크기가 달라질 수밖에 없다. 하지만 대부분 연구가 찾고자 하는 객체의 크기, 축척을 반영하는 영상의 공간 해상도, 영상의 크기 등을 고려하지 않고, 관성적으로 적용하고자 하는 모델에서 기존에 사용했던 데이터 명세를 그대로 적용하는 경우가 많다. 본 연구에서는 드론 영상의 공간 해상도, 영상 크기가 6가지 월동채소의 의미론적 분할(semantic segmentation) 딥러닝 모델의 정확도와 훈련 시간에 미치는 영향을 실험 통해 정량적으로 분석하였다. 실험 결과 6가지 월동채소 분할의 평균 정확도는 공간 해상도가 증가함에 따라 증가하지만, 개별 작물에 따라 증가율과 수렴하는 구간이 다르고, 동일 해상도에서 영상의 크기에 따라 정확도와 시간에 큰 차이가 있음을 발견하였다. 특히 각 작물에 따라 최적의 해상도와 영상의 크기가 다름을 알 수 있었다. 연구성과는 향후 드론 영상 데이터를 이용한 월동채소 분할 모델을 개발할 때, 드론 영상의 촬영과 학습 데이터의 제작 효율성 확보를 위한 자료로 활용할 수 있을 것이다.


A Drone image is an ultra-high-resolution image that is several or tens of times higher in spatial resolution than a satellite or aerial image. Therefore, drone image-based remote sensing is different from traditional remote sensing in terms of the level of object to be extracted from the image and the amount of data to be processed. In addition, the optimal scale and size of data used for model training is different depending on the characteristics of the applied deep learning model. However, most studies do not consider the size of the object to be found in the image, the spatial resolution of the image that reflects the scale, and in many cases, the data specification used in the model is applied as it is before. In this study, the effect of spatial resolution and image size of drone image on the accuracy and training time of the semantic segmentation deep learning model of six wintering vegetables was quantitatively analyzed through experiments. As a result of the experiment, it was found that the average accuracy of dividing six wintering vegetables increases as the spatial resolution increases, but the increase rate and convergence section are different for each crop, and there is a big difference in accuracy and time depending on the size of the image at the same resolution. In particular, it was found that the optimal resolution and image size were different from each crop. The research results can be utilized as data for getting the efficiency of drone images acquisition and production of training data when developing a winter vegetable segmentation model using drone images.

KCI등재

8낙동강 유역의 연안 해저지하수 유출특성에 관한 연구

저자 : 김대선 ( Daesun Kim ) , 정한철 ( Hahn Chul Jung )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1589-1597 (9 pages)

다운로드

(기관인증 필요)

초록보기

연안지역의 해저지하수 유출(SGD)은 하천과 함께 영양염류와 미량금속 등을 해양으로 유입시키는 주요 수송로 역할로써 중요성이 대두되고 있다. 이에 우리나라 육상의 연안지역인 낙동강 대권역 유역에 대해 1986년부터 2020년까지 35개년의 월별 SGD를 추정하고 계절적 변화와 시공간적 특성을 분석하였다. SGD 산출지점인 낙동강 연안유역은 SRTM(Shuttle Radar Topography Mission) DEM(Digital Elevation Model) 자료를 이용하여 210개의 유역을 추출하였으며, 우리나라에 적용가능한 가장 높은 해상도의 전지구 모델인 FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) 10 km recharge를 통해 추정한 낙동강 연안유역의 연평균 SGD는 466.7 ㎡/yr 로 나타났다. 낙동강 연안유역 SGD는 시계열적으로 큰 변동성은 없었으나 여름에 집중되던 SGD유출이 가을철로 주요유출 시기가 확대되는 경향을 보였다. 또한 공간적으로는 큰 수계와 인접한 연안지역에서 계절에 관계없이 SGD 유출이 많고 1980년대 이후로 시간적 변화에 따라 다소 증가하고 있는 경향을 확인하였다. 이러한 결과는 낙동강 지역의 강수패턴의 시기가 확대되며, 기저유량이 많은 지역의 집수량이 높은 데에 따른 것으로 사료된다. 본 연구는 우리나라의 SGD 특성을 탐구하기 위한 모델링 기법을 제시한 선행적 연구이며 우리나라 해저지하수 유출이 해양에 미치는 영향과 연안관리를 위한 기초자료로 활용성이 기대된다.


Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristics through the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 ㎡/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedent study that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.

KCI등재

9위성 영상의 분류 기법을 활용한 겨울철 하천의 얼음 면적과 기온 변화 비교 연구

저자 : 박성재 ( Sungjae Park ) , 김봉찬 ( Bongchan Kim ) , 이창욱 ( Chang-wook Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1599-1610 (12 pages)

다운로드

(기관인증 필요)

초록보기

자연환경이나 지역생태계는 다양한 요인에 의하여 변화가 일어나지만 그 중에서도 수온의 변화는 하천생태계에서 주변환경에 영향을 미치는 큰 요인 중 하나이다. 하지만 현재까지 수온 변화에 관한 연구는 수온이 하천환경에 미치는 영향력에 비해 활발히 진행되지 못하였다. 이에 본 연구에서는 2015년부터 2021년까지 홍천강의 겨울철 얼음의 면적 변화를 통해 수온의 변화를 연구하고자 한다. 현장조사 결과를 참고하여 광학 위성 영상을 분류하였으며, SAR 위성 영상은 GLCM 텍스처 분석법을 이용하여 입력 자료의 한계를 극복하고자 하였다. 사용된 모든 영상의 정확도 검증을 수행한 뒤, 산출된 월 평균 얼음 면적과 인접한 기상대의 기온자료와 비교를 하였다. 수온과 얼음의 면적이 상관관계가 있음을 알 수 있었으며 본 연구결과는 접근이 힘들거나 시스템이 갖춰지지 않은 소규모 하천의 환경변화 연구에 활용할 수 있을 것이다.


The natural environment and local ecosystem change depending on various factors, but among them, the change in water temperature is one of the major factors affecting the surrounding environment in the river ecosystem. However, research on water temperature change have not been actively conducted to date compared to the effect of water temperature on the river environment. Therefore, this study intends to study the change in water temperature from 2015 to 2021 through the change in the area of winter ice in the Hongcheon River. Optical satellite images were classified by referring to the field survey results, and the SAR satellite images tried to overcome the limitations of the input data by using the GLCM texture analysis method. After verifying the accuracy of all images used, the calculated monthly average ice area was compared with the temperature data of the adjacent AWS. It was found that there is a correlation between water temperature and ice area, and the results of this study can be used to study environmental changes in small-scale rivers that are difficult to access or do not have systems in place.

KCI등재

10지상관측 기상자료를 적용한 KLDAS(Korea Land Data Assimilation System)의 토양수분 · 증발산량 산출

저자 : 박광하 ( Gwangha Park ) , 계창우 ( Changwoo Kye ) , 이경태 ( Kyungtae Lee ) , 유완식 ( Wansik Yu ) , 황의호 ( Eui-ho Hwang ) , 강도혁 ( Dohyuk Kang )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 6호 발행 연도 : 2021 페이지 : pp. 1611-1623 (13 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 K-LIS(Korea-Land surface Information System)의 KLDAS(Korea Land Data Assimilation System)를 사용하여 LSM의 초기 경계조건 최적화를 위해 스핀업(Spin-up)을 진행하였고다. 스핀업은 2018년을 대상으로 8회 반복 수행하였다. 또한, 국내 기상청(KMA, Korea Meteorological Administration), 농촌진흥청(RDA, Rural Development Administration), 한국농어촌공사(KRC, Korea Rural Community Corporation), 한국수력원자력(KHNP, Korea Hydro & Nuclear Power Co., Ltd.), 한국수자원공사(K-water, Korea Water Resources Corporation), 환경부(ME, Ministry of Environment) 등에서 관측하고 있는 기상자료를 사용하여 저해상도(K-Low, Korea Low spatial resolution; 0.125°) 및 고해상도(K-High, Korea High spatial resolution; 0.01°)의 기상자료를 생성하여KLDAS에 적용하였다. 그리고, K-Low 및 K-High의 정확도 향상 정도를 확인하기 위해 선행 연구에서 사용된 MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, version 2)와 ASOS-S(ASOS-Spatial)가 적용된 토양수분 및 증발산량을 같이 평가하였다. 그 결과, 초기 경계조건의 최적화는 토양수분의 경우 2회(58개 지점), 3회(6개 지점), 6회(3개 지점)의 스핀업이 필요하고, 증발산량의 경우 1회(2개 지점), 2회(2개 지점)의 스핀업이 필요하다. MERRA-2, ASOS-S, K-Low, K-High을 적용한 토양수분의 경우 R2의 평균은 각각 0.615, 0.601, 0.594, 0.664이고, 증발산량의 경우 R2의 평균은 각각 0.531, 0.495, 0.656, 0.677로 K-High의 정확도가 가장 높은 것으로 평가되었다. 본 연구 결과를 통해 다수의 지상 관측자료를 확보하고 고해상도의 격자형 기상자료를 생성하면 KLDAS의 정확도를 높일 수 있다. 다만, 지점 자료를 격자로 변환할 때 각 지점의 기상현상이 충분히 고려되지 않으면 정확도는 오히려 낮아진다. 향후 IDW의 매개변수 설정 또는 다른 보간기법을 사용하여 격자형 기상자료를 생성하여 적용하면 보다 높은 품질의 자료를 산출할 수 있을 것으로 판단된다.


This study demonstrates soil moisture and evapotranspiration performance using Korea Land Data Assimilation System (KLDAS) under Korea Land Information System (KLIS). Spin-up was repeated 8 times in 2018. In addition, low-resolution and high-resolution meteorological data were generated using meteorological data observed by Korea Meteorological Administration (KMA), Rural Development Administration (RDA), Korea Rural Community Corporation (KRC), Korea Hydro & Nuclear Power Co.,Ltd. (KHNP), Korea Water Resources Corporation (K-water), and Ministry of Environment (ME), and applied to KLDAS. And, to confirm the degree of accuracy improvement of Korea Low spatial resolution (hereafter, K-Low; 0.125°) and Korea High spatial resolution (hereafter, K-High; 0.01°), soil moisture and evapotranspiration to which Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and ASOS-Spatial (ASOS-S) used in the previous study were applied were evaluated together. As a result, optimization of the initial boundary condition requires 2 time (58 point), 3 time (6 point), and 6 time (3 point) spin-up for soil moisture. In the case of evapotranspiration, 1 time (58 point) and 2 time (58 point) spin-ups are required. In the case of soil moisture to which MERRA-2, ASOS-S, K-Low, and K-High were applied, the mean of R2 were 0.615, 0.601, 0.594, and 0.664, respectively, and in the case of evapotranspiration, the mean of R2 were 0.531, 0.495, 0.656, and 0.677, respectively, indicating the accuracy of K-High was rated as the highest. The accuracy of KLDAS can be improved by securing a large number of ground observation data through the results of this study and generating high-resolution grid-type meteorological data. However, if the meteorological condition at each point is not sufficiently taken into account when converting the point data into a grid, the accuracy is rather lowered. For a further study, it is expected that higher quality data can be produced by generating and applying grid-type meteorological data using the parameter setting of IDW or other interpolation techniques.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1기후변화 시나리오를 고려한 위성영상 기반 미래 탄소흡수량 분포 추정

저자 : 나상일 ( Sang-il Na ) , 안호용 ( Ho-yong Ahn ) , 류재현 ( Jae-hyun Ryu ) , 소규호 ( Kyu-ho So ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 833-845 (13 pages)

다운로드

(기관인증 필요)

초록보기

탄소흡수량 산정 및 토지이용 변화에 대한 이해는 기후변화 연구에서 매우 중요하다. 기존의 연구에서는 토지이용 변화에 따른 탄소흡수량 산정에 원격탐사 기술이 사용되고 있으나 대부분 과거의 탄소흡수량 변화에 초점을 맞추고 있다. 따라서 미래 탄소흡수량 변화 예측 연구는 부족한 실정이다. 본 연구에서 CLUE-S 모형을 사용하여 토지이용 변화를 모의하고 기후변화 시나리오를 고려하여 미래 탄소흡수량의 변화를 예측하였다. 그 결과, RCP 4.5 및 8.5 시나리오에서 탄소흡수량은 각각 7.92, 13.02% 감소되는 것으로 예측되었다. 따라서 본 연구에서 제안한 방법은 다른 기후변화 시나리오를 고려한 미래 탄소흡수량 변화에도 적용이 가능할 것으로 기대된다.

KCI등재

2SAR 영상 정합 정확도 평가를 위한 FSIM 인자 활용 가능성

저자 : 김상완 ( Sang-wan Kim ) , 이동준 ( Dongjun Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 847-859 (13 pages)

다운로드

(기관인증 필요)

초록보기

최근 고해상도 위성 SAR 영상이 늘어남에 따라, 변화탐지, 영상 융합 등 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 커지고 있다. 영상 정합 결과에 대한 정량적 평가는 분석자에 의해 추출된 GCPs (Ground Control Points)를 이용한 RMSE (Root Mean Square Error) 값이 널리 사용되어 왔으나, 영상정합 결과의 정확도를 자동으로 측정하는 방법에 대한 연구는 미비한 실정이다. 본 연구에서는 SAR 영상 정합의 정확도 평가지표로, 단일채널 영상의 품질 평가 알고리즘으로 개발된 FSIM (Feature Similarity) 값을 적용하는 것에 대한 타당성 분석을 수행하였다. 다양한 관측각도 및 관측방향에서 수집된 TerraSAR-X staring spotlight 자료를 분석에 사용하였다. SAR 영상의 공간 해상도에 따른 FSIM 값 변화는 매우 작은 값을 보였다. 따라서, 다양한 공간해상도의 SAR 영상 간에도 동일한 척도를 가지고 FSIM 값을 사용할 수 있다. 단일 SAR 영상을 이용하여 정합 오차에 따른 FSIM값 변화를 분석하였으며, 이 값을 기준으로 서로 다른 관측조건에서 수집된 영상 간의 정합 오차에 따른 FSIM 값 변화를 분석하였다. 서로 다른 관측각 또는 관측방향 자료 조합에서, 관측기하 차이에 의해 FSIM 값은 다소 저하되었다. 토지피복별 FSIM 값 분석 결과에서, 도심지역에서 정합오차에 따른 FSIM 값의 변화가 가장 뚜렷하게 나타났다. 따라서, FSIM 값을 이용하여 영상정합의 정확도를 판별하기 위해서는 도심지역에서 산출된 FSIM 값을 이용하는 것이 바람직하다. FSIM 값은 SAR 영상 정합 정확도에 대한 지표로 사용될 수 있는 충분한 가능성이 있는 것으로 판단된다.

KCI등재

3GOCI와 AHI 자료를 활용한 에어로졸 광학두께 합성장 산출 연구

저자 : 강형우 ( Hyeongwoo Kang ) , 최원이 ( Wonei Choi ) , 박정현 ( Jeonghyun Park ) , 김세린 ( Serin Kim ) , 이한림 ( Hanlim Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 861-870 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 COMS (Communication, Oceanography and Meteorology Satellite) 위성의GOCI (Geostationary Ocean Color Imager) 센서와 Himawari-8 위성의 AHI (Advanced Himawari Imager) 센서에서 산출되는 에어로졸 광학두께 (Aerosol Optical Depth; AOD)를 활용하여 단일화된 AOD 합성장을 생산하였다. 위성 간의 공간해상도와 위치좌표계가 다르기 때문에 이를 맞춰주는 전처리 작업을 선행하였다. 이후 지상관측 기반인 AERONET (AErosol RObotic NETwork)의 레벨 1.5 AOD 자료를 사용하여 각 위성과 AERONET과의 상관관계 분석 및 추세를 보간하여 기존 위성 AOD 보다 정확한 위성 AOD 자료를 생산하였다. 이후 합성과정을 진행하며 최종적으로 시공간적으로 더 완벽하고 정확한 AOD 합성장을 생산하였다. 생산된 AOD 합성장의 제곱근 평균 오차(Root Mean Square Error; RMSE)는 0.13, 평균 편향(mean bias)는 0.05로, 기존의 GOCI AOD (RMSE: 0.15, Mean bias: 0.11)와 AHI AOD (RMSE: 0.15, Mean bias: 0.05) 보다 나은 성능을 보였다. 또한 합성된 AOD는 단일위성에서 구름으로 인하여 관측되지 못한 지역에서 시공간적으로 보다 완벽하게 생산되었음을 확인하였다.

KCI등재

4항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구

저자 : 이성혁 ( Seong-hyeok Lee ) , 이명진 ( Moung-jin Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 871-884 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구의 목적은 항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터를 구축, 검증 및 알고리즘 적용의 효율화 방안을 연구하였다. 이를 위하여 토지피복 8개 항목에 대하여 고해상도의 항공영상 및 Sentinel-2 인공위성에서 얻은 이미지를 사용하여 0.51 m 및 10 m Multi-resolution 데이터셋을 구축하였다. 또한, 학습 데이터의 구성은 Fine data (총 17,000개) 와 Coarse data (총 33,000개)를 동시 구축 및 정밀한 변화 탐지 및 대규모 학습 데이터셋 구축이라는 2가지 목적을 달성하였다. 학습 데이터의 정확도를 위한 검수는 정제 데이터, 어노테이션 및 샘플링으로 3단계로 진행하였다. 최종적으로 검수가 완료된 학습데이터를 Semantic Segmentation 알고리즘 중 U-Net, DeeplabV3+에 적용하여, 결과를 분석하였다. 분석결과 항공영상 기반의 토지피복 평균 정확도는 U- Net 77.8%, Deeplab V3+ 76.3% 및 위성영상 기반의 토지피복에 대한 평균 정확도는 U-Net 91.4%, Deeplab V3+ 85.8%이다. 본 연구를 통하여 구축된 고해상도 항공영상 및 위성영상을 이용한 토지피복 인공지능 학습 데이터셋은 토지피복 변화 및 분류에 도움이 되는 참조자료로 활용이 가능하다. 향후 우리나라 전체를 대상으로 인공지능 학습 데이터셋 구축 시, 토지피복을 연구하는 다양한 인공지능 분야에 활용될 것으로 기대된다.

KCI등재

5천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석

저자 : 김희애 ( Hee-ae Kim ) , 정성래 ( Sung-rae Chung ) , 오수민 ( Soo Min Oh ) , 이병일 ( Byung-il Lee ) , 신인철 ( In-chul Shin )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 885-901 (17 pages)

다운로드

(기관인증 필요)

초록보기

천리안위성 2A호의 2분 주기 고속 관측(rapid-scan) 자료를 이용하여, 가시·수증기·적외 채널의 시간 해상도와 표적의 크기가 해당 채널의 중규모 대기운동벡터 생산에 미치는 영향을 분석하였다. 중규모 대기운동벡터 산출을 위하여 2-10분의 영상 시간 간격 변화 하에서 표적의 크기를 8×8에서 40×40 화소 크기로 변환시키며, 시·공간적인 조건 변화에 따른 벡터 생산량과 평균 속력, 오차 특성의 변화 양상을 비교하였다. 그 결과, 표적의 크기가 작을수록 위성의 시간 간격 변화에 따른 벡터 개수의 변화와, 표준화된 평균 제곱근 편차(Normalized Root Mean Squared Vector Difference; NRMSVD) 값의 변화가 더욱 뚜렷해졌다. 또한 고도별 오차 특성 분석 결과에서는 평균 속력이 낮고 대기 현상의 시·공간 규모가 작은 하층(700-1000 hPa)의 경우, 짧은 시간 간격의 영상 자료와 작은 표적을 이용하는 것이 벡터 산출에 더욱 유리하게 작용하는 것을 확인할 수 있었다. 위성의 시간 간격과 표적의 크기는 대기 순환의 시·공간 규모와 밀접한 연관이 있는 요소이다. 따라서, 대기운동벡터 활용 목적에 맞게 표적 크기와 위성 시간 간격을 최적화하는 과정이 필요하며, 중규모 기상현상의 실황 분석을 위한 대기운동벡터 산출 알고리즘에서는 표적 크기와 영상 시간 간격을 각각 16×16, 4분으로 설정해주는 것이 가장 적합하다고 판단된다.

KCI등재

6오픈소스 GIS 프로그램의 지형인자 계산 비교: 도서지역 경사도와 지형습윤지수 중심으로

저자 : 이보라 ( Bora Lee ) , 이호상 ( Ho-sang Lee ) , 이광수 ( Gwang-soo Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 903-916 (14 pages)

다운로드

(기관인증 필요)

초록보기

지형은 고도, 경사, 측면으로 설명되는 지표면의 물리적인 모양을 나타내는 것으로 지형적 조건에 따라 에너지의 이동이 결정된다. 이것은 태양 에너지를 얼마나 많이 받을지, 바람이나 비가 얼마나 많은 영향을 미칠지 등에 대한 중요한 결정 요인들로 지표면 상에 존재하는 모든 생물, 특히 산림 식생의 입지 환경에 큰 영향을 준다. 도서지역 산림과 같이 자연적으로 형성된 지형 인자가 산림 식생의 생태환경을 결정하는 요인이 될 때 보다 정확한 지형 인자들의 계산은 도서산림의 입지환경을 이해하는데 매우 중요하다. 최근에는 연구자, 학교, 산업 및 정부를 위해 수많은 무료오픈소스 소프트웨어 지리정보시스템 프로그램(Free Open Source Software Geographic Information Systems, FOSS GIS)들이 이러한 지형인자들을 보다 정확하게 계산하기 위해 다양한 알고리즘을 적용하고 있다. FOSS GIS 프로그램은 사용자 요구에 맞게 수정이 가능한 유연한 알고리즘을 제공한다. 이와 같은 수요에 맞춰 이 연구에서는 지형 분석이 특히 중요한 도서지역 산림을 대상으로 하여 FOSS GIS 프로그램들의 지형인자 계산 결과값을 비교해 보고 향후 지역 생태 연구에 있어 지형 인자 계산 방법을 결정할 때 그 기준을 마련하고자 한다. 연구 지역은 전라남도 도서 지역을 대상으로 하였고 FOSS GIS 프로그램 중 가장 널리 사용되는 GRASS GIS와 SAGA GIS로 처리하였다. 입지환경에 있어 가장 널리 사용되는 설명인자인 경사도와 TWI(Topographical Wetness Index) 지도를 각 FOSS GIS 프로그램으로 생성하고 그 차이를 분석하여 각 FOSS GIS 프로그램의 장단점을 토의하였다.

KCI등재

7무인기 기반 다중분광 영상을 이용한 벼 쓰러짐 영역의 특성 분석

저자 : 문현동 ( Hyun-dong Moon ) , 류재현 ( Jae-hyun Ryu ) , 나상일 ( Sang-il Na ) , 장선웅 ( Seon Woong Jang ) , 신서호 ( Seo-ho Sin ) , 조재일 ( Jaeil Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 917-926 (10 pages)

다운로드

(기관인증 필요)

초록보기

벼 쓰러짐은 벼농사의 대표적인 기상재해 피해로써 강한 바람과 강우로 발생한다. 원격탐사 기법은 넓은 지역의 벼 쓰러짐을 효과적으로 탐지하기에 적절한 방법이다. 실제로 벼 쓰러짐은 벼 키가 최대인 생육 시기에 주로 발생하여 군락의 큰 구조적 변화를 불러오기 때문에 분광 반사도 차이를 야기한다. 따라서, 본고에서는 나주에 위치한 전남농업기술원의 2020년 태풍에 의한 논벼 피해를 444 nm부터 842 nm까지 10개 밴드로 구성된 카메라 영상으로 분석하였다. 드론 영상마다 벼 쓰러짐 피해를 받은 영역과 벼 쓰러짐 피해가 없는 영역으로 구분하여 벼 쓰러짐 영역의 분광 반사도 특성 차이와 식생 탐지에 주로 사용되는 식생지수인 NDVI (Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge), CCI (Chlorophyll Carotenoid Index)의 변화를 살펴보았다. 반사도 값의 변화는 밴드6(668 nm)에서 가장 적었으며, 이를 중심으로 밴드 파장이 감소와 증가할수록 일반 논벼 보다 쓰러짐 영역 반사도가 커졌다. 또한, 쓰러진 벼를 묶어 세운 복구 지역은 대부분의 밴드에 걸쳐 반사도가 크게 감소함을 볼 수 있었다. NDVI와 NDRE는 벼 쓰러짐 영역에 대해 민감하게 반응하였으나, 그 반응 대상 및 정도는 서로 달랐다. 본 연구의 결과는 향후 드론과 위성을 이용한 벼 쓰러짐 피해 조사 알고리즘에 기여될 것으로 기대한다.

KCI등재

8신경망 모델을 사용한 편대비행 저궤도위성 가속도계 데이터 예측 기법

저자 : 김민규 ( Mingyu Kim ) , 김정래 ( Jeongrae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 927-938 (12 pages)

다운로드

(기관인증 필요)

초록보기

편대 비행하는 저궤도위성에는 비슷한 크기의 비중력 섭동이 일정한 시간 차이를 두고 가해진다. 이러한 시간상관관계를 이용하면 한 개 위성의 가속도계에서 측정된 가속도 값으로 다른 편대비행 저궤도위성의 비중력가속도를 추정할 수 있다. 편대비행 저궤도위성인 GRACE 및 GRACE-FO 위성에서 한 개 위성의 가속도계 데이터를 사용할 수 없는 기간이 존재하는데, 앞서 기술된 시간 이식 기법이 JPL (Jet Propulsion Laboratory)에서 공식적으로 가속도계 데이터 복원 시 사용되고 있다. 본 논문에서는 기존의 시간 이식 기법의 가속도계 추정 정확도를 개선하기 위하여 신경망 (neural network; NN) 모델 기반 편대비행 저궤도위성 가속도계 데이터 추정 방법을 제안하였다. 시간 이식 기법은 위성의 위치 및 우주환경요소 등을 반영할 수 없지만, NN 모델은 이를 모델 입력으로 사용할 수 있으므로 예측 정확도를 높일 수 있다. 1개월간 NN 모델을 사용하여 가속도계 예측 시험을 수행하고 시간 이식 기법과 예측 정확도를 비교하였다. 그 결과 along-track 및 radial 방향에서 NN 모델의 가속도계 데이터의 예측 오차는 시간 이식 기법에 비해 각각 55.0%, 40.1% 감소하였다.

KCI등재

9산불 후 식생 회복 모니터링을 위한 Sentinel-2 위성영상의 RGB 합성기술

저자 : 김상일 ( Sang-il Kim ) , 안도섭 ( Do-seob Ahn ) , 김승철 ( Seung-chul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 939-946 (8 pages)

다운로드

(기관인증 필요)

초록보기

산불로 인한 피해지역의 산림 변화를 모니터링하는 것은 식생복원에 중요한 정보를 제공하며, 자연 재해를 완화하고 복구하기 위해 공간정보를 가지는 원격탐사 자료는 모니터링에 필요한 유용한 정보를 제공하는 것으로 알려져 있다. 하지만 원격탐사자료를 활용한 복구 측면에 초점 두어 연구된 사례가 미비한 상황이다. 본 연구는 화재 후 식생회복을 모니터링하기 위한 것으로, Sentinel-2 위성 데이터를 사용하여 산불 피해 지역을 모니터링하는 방법을 제시하는 것을 목적으로 한다. 산불피해지역의 식생회복 모니터링을 위해 Tasseled Cap 선형회귀 추세를 기반으로 RGB 합성기술을 제안하였다. 이러한 위성영상을 활용한 원격탐사 시각화 기법을 통해 효과적인 모니터링 가능성을 확인할 수 있었다.

KCI등재

10무인비행체 탑재 다중분광 센서별 반사율 및 식생지수 변화 비교

저자 : 이경도 ( Kyung-do Lee ) , 안호용 ( Ho-yong Ahn ) , 류재현 ( Jae-hyun Ryu ) , 소규호 ( Kyu-ho So ) , 나상일 ( Sang-il Na )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 947-958 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 무인비행체에 탑재해서 활용되고 있는 다중분광 센서의 센서별 반사율 및 식생지수를 산정하여 시계열 작황분석을 위한 센서별, 센서간 활용 가능성을 평가하기 위해 수행하였다. RedEdge-MX, S110 NIR, Sequioa, P4M 등 4종의 무인비행체 탑재 다중분광센서에 대하여 2020년 9월 14일과 9월 15일에 걸쳐 오전, 오후 각 1회, 총 4회씩 항공영상을 촬영하고 반사율 및NDVI를 산정하여 비교하였다. 반사율의 경우 모든 센서에서 시계열 변동계수가 평균 약 10% 이상의 값을 보여 활용에는 한계가 있는 것으로 나타났다. 작물 시험구에 대한 센서별NDVI 변동계수는 식생이 우거져 활력도가 높은 시험구에서 평균 1.2~3.6%의 값을 보여 5% 이내의 변동성을 보였다. 그러나 이는 청천일의 변동계수에 비해서는 높은 값을 보인 것으로서 실험 기간 동안 오전, 오후에 구름 등 기상환경이 달랐기 때문으로 판단되며 시계열 작황 분석을 위한 정밀NDVI 산정 시에는 일정한 광 환경을 유지할 수 있는 촬영 계획 수립과 이행이 필요할 것으로 판단된다. 무인비행체 다중분광센서 간NDVI를 상호 비교한 결과 본 실험에서는 RedEdeg-MX 센서의 경우 안정적인 광 환경 내에서 동종의 센서를 여러 대 사용하더라도NDVI 값의 특별한 보정 없이 함께 활용할 수 있을 것으로 판단된다. RedEdge-MX, P4M, Sequioa 센서는 상호 선형적인 관계를 보였으나NDVI 간의 off-set 보정을 통한 공동 활용 가능성 평가를 위해서는 보완 실험이 필요할 것으로 생각된다.

발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기