논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> 항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구

KCI등재

항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구

A Study of Establishment and application Algorithm of Artificial Intelligence Training Data on Land use/cover Using Aerial Photograph and Satellite Images

이성혁 ( Seong-hyeok Lee ) , 이명진 ( Moung-jin Lee )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 37권5호
  • : 연속간행물
  • : 2021년 10월
  • : 871-884(14pages)
대한원격탐사학회지

DOI


목차

1. 서론
2. 연구 지역 및 AI 학습 데이터 구성
3. AI 학습데이터 품질 검수
4. AI 알고리즘 적용
5. 결론 및 제언
사사
References

키워드 보기


초록 보기

본 연구의 목적은 항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터를 구축, 검증 및 알고리즘 적용의 효율화 방안을 연구하였다. 이를 위하여 토지피복 8개 항목에 대하여 고해상도의 항공영상 및 Sentinel-2 인공위성에서 얻은 이미지를 사용하여 0.51 m 및 10 m Multi-resolution 데이터셋을 구축하였다. 또한, 학습 데이터의 구성은 Fine data (총 17,000개) 와 Coarse data (총 33,000개)를 동시 구축 및 정밀한 변화 탐지 및 대규모 학습 데이터셋 구축이라는 2가지 목적을 달성하였다. 학습 데이터의 정확도를 위한 검수는 정제 데이터, 어노테이션 및 샘플링으로 3단계로 진행하였다. 최종적으로 검수가 완료된 학습데이터를 Semantic Segmentation 알고리즘 중 U-Net, DeeplabV3+에 적용하여, 결과를 분석하였다. 분석결과 항공영상 기반의 토지피복 평균 정확도는 U- Net 77.8%, Deeplab V3+ 76.3% 및 위성영상 기반의 토지피복에 대한 평균 정확도는 U-Net 91.4%, Deeplab V3+ 85.8%이다. 본 연구를 통하여 구축된 고해상도 항공영상 및 위성영상을 이용한 토지피복 인공지능 학습 데이터셋은 토지피복 변화 및 분류에 도움이 되는 참조자료로 활용이 가능하다. 향후 우리나라 전체를 대상으로 인공지능 학습 데이터셋 구축 시, 토지피복을 연구하는 다양한 인공지능 분야에 활용될 것으로 기대된다.
The purpose of this study was to determine ways to increase efficiency in constructing and verifying artificial intelligence learning data on land cover using aerial and satellite images, and in applying the data to AI learning algorithms. To this end, multi-resolution datasets of 0.51 m and 10 m each for 8 categories of land cover were constructed using high-resolution aerial images and satellite images obtained from Sentinel-2 satellites. Furthermore, fine data (a total of 17,000 pieces) and coarse data (a total of 33,000 pieces) were simultaneously constructed to achieve the following two goals: precise detection of land cover changes and the establishment of large-scale learning datasets. To secure the accuracy of the learning data, the verification was performed in three steps, which included data refining, annotation, and sampling. The learning data that was finally verified was applied to the semantic segmentation algorithms U-Net and DeeplabV3+, and the results were analyzed. Based on the analysis, the average accuracy for land cover based on aerial imagery was 77.8% for U-Net and 76.3% for Deeplab V3+, while for land cover based on satellite imagery it was 91.4% for U-Net and 85.8% for Deeplab V3+. The artificial intelligence learning datasets on land cover constructed using high-resolution aerial and satellite images in this study can be used as reference data to help classify land cover and identify relevant changes. Therefore, it is expected that this study’s findings can be used in the future in various fields of artificial intelligence studying land cover in constructing an artificial intelligence learning dataset on land cover of the whole of Korea.

UCI(KEPA)

I410-ECN-0102-2022-400-000915091

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1815


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권5호(2022년 10월) 수록논문
최근 권호 논문
| | | |

KCI등재

1습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구

저자 : 홍상훈 ( Sang-hoon Hong ) , Shimon Wdowinski

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 447-460 (14 pages)

다운로드

(기관인증 필요)

초록보기

인공위성 영상레이더 위상간섭기법은 널리 활용되고 있는 원격탐사 기술로서 지진, 화산, 지반침하 등으로부터 발생한 단단한 지각 표면의 변위를 매우 정밀하게 주기적으로 관측할 수 있는 연구 활용분야의 한 종류이다. 습지대 환경처럼 수상 표면에 식생이 존재하는 경우에는 지표면과 동일한 방법을 적용하여 넓은 지역에 대한 높은 공간해상도의 수위 변화 지도 제작이 가능하다. 현재 다양한 파장 대역의 인공위성 영상레이더 시스템이 운용 중에 있으며 여기에는 넓은 지역에 대한 영상을 효과적으로 획득할 수 있는 광역 관측 ScanSAR 모드를 제공하는 위성도 다수 포함되어 있다. 본 논문의 연구 지역인 콜롬비아 북부의 Ciénaga Grande de Santa Marta (CGSM) 습지대는 카리브 해안을 따라 고지대에 위치한 광대한 습지 지역이다. CGSM 습지대는 해수면 상승과 기후 변화와 같은 자연적인 원인 뿐만 아니라 20세기 후반부터 시작된 농업개발 및 도시확장 등의 다양한 인간 활동으로 인한 심각한 환경적 위협을 받고 있다. 최근 해당 습지 지역에 대한 생태학적 중요성이 대두되면서 해당 습지를 보호하고 복원하기 위한 다양한 계획이 진행 중에 있다. 주기적인 습지대 환경 모니터링에 있어 수위 변화 관측은 매우 중요한 자료를 제공하며 일반적으로 수위계와 같은 현장관측 자료 등에 의존하는 경우가 많다. 수위계의 경우 시간적으로 연속적인 자료 관측이 가능하지만 공간적 분포를 이해하기에는 어려운 경우가 많다. 본 연구에서는 현장 관측의 공간적 해상도의 부족함을 보완하기 위한 L-밴드 ALOS-2 PALSAR-2 ScanSAR 광역 관측 모드 자료의 영상레이더 위상간섭기법 습지대 수위 변화 관측 활용 가능성에 대해 평가하고자 한다. 광역 관측 모드의 공간해상도 및 위상간섭도 품질 비교를 위해 ALOS-2 PALSAR-2 stripmap 고해상 모드와 함께 분석하였다.


It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

KCI등재

2시계열 토지피복도 제작을 위한 준감독학습 기반의 훈련자료 자동 추출

저자 : 곽근호 ( Geun-ho Kwak ) , 박노욱 ( No-wook Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 461-469 (9 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 시계열 토지피복도를 제작하기 위해 분석자 개입 없이 준감독학습 기반 분류를 이용하는 새로운 훈련자료 추출 기법을 제안하였다. 준감독학습 기반 훈련자료 추출 기법은 먼저 분류 대상 영상과 유사한 토지피복 특성을 포함하는 과거 영상으로부터 획득한 초기 훈련자료를 이용하여 초기 분류를 수행한다. 이후, 분류의 불확실성 정보와 인접 화소의 분류 항목을 제약 조건으로 이용하는 준감독학습 기반 반복 분류를 이용하여 초기 분류 결과로부터 신뢰할 수 있는 훈련자료를 추출한다. 준감독학습 기반 훈련자료 추출 기법의 적용 가능성은 농경지에서 unmanned aerial vehicle 영상을 이용하는 분류 실험을 통해 평가되었다. 제안한 준감독학습 기반 훈련자료 추출 기법에 의해 자동으로 추출된 새로운 훈련자료를 이용하는 것은 초기 분류 결과에서 나타난 오분류를 두드러지게 완화할 수 있었다. 특히, 인접 화소의 공간 문맥 정보를 고려함으로써 고립된 화소가 크게 감소하였다. 결과적으로, 제안 기법의 분류 정확도는 수동으로 추출한 훈련자료를 이용하는 분류 정확도와 유사하였다. 이러한 결과는 이 연구에서 제시한 준감독학습 기반 반복 분류가 시계열 토지피복도를 제작하기 위해 신뢰할 수 있는 훈련자료를 자동으로 추출하는데 효과적으로 적용될 수 있음을 나타낸다.


This paper presents a novel training data extraction approach using semi-supervised learning (SSL)-based classification without the analyst intervention for time-series land-cover mapping. The SSL-based approach first performs initial classification using initial training data obtained from past images including land-cover characteristics similar to the image to be classified. Reliable training data from the initial classification result are then extracted from SSL-based iterative classification using classification uncertainty information and class labels of neighboring pixels as constraints. The potential of the SSL-based training data extraction approach was evaluated from a classification experiment using unmanned aerial vehicle images in croplands. The use of new training data automatically extracted by the proposed SSL approach could significantly alleviate the misclassification in the initial classification result. In particular, isolated pixels were substantially reduced by considering spatial contextual information from adjacent pixels. Consequently, the classification accuracy of the proposed approach was similar to that of classification using manually extracted training data. These results indicate that the SSL-based iterative classification presented in this study could be effectively applied to automatically extract reliable training data for time-series land-cover mapping.

KCI등재

3전산유체역학 모델을 활용한 여름철 종관기상관측소의 기온과 바람 관측 환경 평가

저자 : 강정은 ( Jung-eun Kang ) , 노주환 ( Ju-hwan Rho ) , 김재진 ( Jae-jin Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 471-484 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 전산유체역학 모델을 이용하여 기상청에서 운용하는 종관기상관측소(automated synoptic observing system, ASOS) 10개 지점을 대상으로 ASOS 주변 지형과 건물이 기온과 바람(풍속, 풍향) 관측 환경에 미치는 영향을 분석하였다. ASOS에서 최근 10년간 8월의 관측 자료를 기반으로 전산유체역학(computational fluid dynamics, CFD) 모델의 초기·경계 자료를 구축하였다. 실제 토지 피복을 고려한 경우와 모든 피복을 초지로 가정한 경우에 대해, 관측 고도에서 초기 기온 대비 기온 변화율을 비교함으로써 기온 관측 환경을 분석하였다. 기온 관측 환경은 관측 지점 주위의 토지 피복에 의한 영향을 많이 받았다. ASOS 주변에 지표면 온도가 높은 건물과 도로가 밀집한 경우에 기온 변화율이 크게 나타났다. 반면, 모든 토지 피복을 초지로 가정한 경우에는 초기 기온 대비 기온 변화율이 작았다. 실제 토지 피복을 고려하여 관측 고도의 유입류 대비 풍속 변화율과 풍향 변화를 비교함으로써 풍속과 풍향 관측 환경을 분석하였다. 풍속과 풍향은 ASOS 주변에 관측 고도보다 높거나 비슷한 높이의 지형과 건물 영향을 크게 받았으며, 원거리에 위치한 장애물에 의한 영향도 나타났다. 본 연구 결과는 종관기상관측소의 이전과 신설 단계에서 관측 환경 평가에 활용될 것이다.


This study examined the effects of topography and buildings around the automated synoptic observing system (ASOS) on the observation environment of air temperatures and wind speeds and directions using a computational fluid dynamics (CFD) model. For this, we selected 10 ASOSs operated by the Korea Meteorological Administration. Based on the data observed at the ASOSs in August during the recent ten years, we established the initial and boundary conditions of the CFD model. We analyzed the temperature observation environment by comparing the temperature change ratios in the case considering the actual land-cover types with those assuming all land-cover types as grassland. The land-cover types around the ASOSs significantly affected the air temperature observation environment. The temperature change ratios were large at the ASOSs around which buildings and roads were dense. On the other hand, when all land covers were assumed as grassland, the temperature change ratios were small. Wind speeds and directions at the ASOSs were also significantly influenced by topography and buildings when their heights were higher or similar to the observation heights. Obstacles even located at a long distance affected the wind observation environments. The results in this study would be utilized for evaluating ASOS observation environments in the relocating or newly organizing steps.

KCI등재

4RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험

저자 : 김광섭 ( Kwangseob Kim ) , 이기원 ( Kiwon Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 485-496 (12 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서 RapidEye 위성영상 대기 및 지표반사도 산출물을 생성하는 소프트웨어를 구현하였다. 이 소프트웨어는 절대대기보정 알고리즘을 채택하고 있는 오픈소스 원격탐사 소프트웨어 Orfeo Toolbox (OTB) 기반 Extension이다. 소프트웨어 성능을 확인하기 위하여 구현 결과인 산출물 정확도는 Radiometric Calibration Network (RadCalNet) 사이트의 데이터와 해당 위치에 촬영된 RapidEye 영상을 사용하여 검증하고자 하였다. 또한 거의 같은 일자에 같은 지역을 촬영한 KOMPSAT-3A 영상으로부터 생성한 지표반사도와 Landsat Analysis Ready Data (ARD) 제품 중 하나인 지표반사도 자료도 함께 비교하였다. 이 외에도 같은 영상에 대하여 상업 도구에서 지원하는 QUick Atmospheric Correction (QUAC)와 Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 도구를 적용한 처리 결과와 직접 비교 연구를 수행하였다. RadCalNet 자료에 대비하여 KOMPSAT 지표반사도와 마찬가지로 이 Extension에서 얻은 결과는 5% 이내 일치 수준의 정확도를 나타내었고 QUAC와 FLAASH를 이용한 결과에 비하여 모든 밴드 영상에서 상대적으로 우수한 정확도를 보이는 것으로 나타났다. 농업, 산림이나 환경 분야에서 Red-Edge 밴드의 중요성이 강조되고 있기 때문에 이 소프트웨어를 이용하여 산출되는 RapidEye 영상의 지표반사도 활용도 증가할 것으로 기대한다.


This study is for the software implementation to generate atmospheric and surface reflectance products from RapidEye satellite imagery. The software is an extension based on Orfeo Toolbox (OTB) and an open-source remote sensing software including calibration modules which use an absolute atmospheric correction algorithm. In order to verify the performance of the program, the accuracy of the product was validated by a test image on the Radiometric Calibration Network (RadCalNet) site. In addition, the accuracy of the surface reflectance product generated from the KOMPSAT-3A image, the surface reflectance of Landsat Analysis Ready Data (ARD) of the same site, and near acquisition date were compared with RapidEye-based one. At the same time, a comparative study was carried out with the processing results using QUick Atmospheric Correction (QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool supported by a commercial tool for the same image. Similar to the KOMPSAT-3A-based surface reflectance product, the results obtained from RapidEye Extension showed accuracy of agreement level within 5%, compared with RadCalNet data. They also showed better accuracy in all band images than the results using QUAC or FLAASH tool. As the importance of the Red-Edge band in agriculture, forests, and the environment applications is being emphasized, it is expected that the utilization of the surface reflectance products of RapidEye images produced using this program will also increase.

KCI등재

5농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용

저자 : 이슬찬 ( Seulchan Lee ) , 정재환 ( Jaehwan Jeong ) , 오승철 ( Seungcheol Oh ) , 정하규 ( Hagyu Jeong ) , 최민하 ( Minha Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 497-510 (14 pages)

다운로드

(기관인증 필요)

초록보기

농업용 저수지는 수자원이 계절적으로 편중된 한반도에서 갈수기 용수 공급을 위한 필수적인 구조물이다. 효율적인 물 관리를 위해서는 중소규모 저수지에 대한 체계적이고 효과적인 모니터링이 필요하며, 합성개구 레이더(Synthetic Aperture Radar, SAR) 영상은 전천후 관측이 가능하다는 특징과 함께 연속적인 저수지 모니터링을 위한 도구가 된다. 본 연구에서는 10 m급 해상도를 갖는 Sentinel-1 SAR 영상과 1 m급 해상도의 Capella XSAR 영상을 활용하여 울산광역시 차리, 갈전, 뒷골 저수지의 수체를 탐지하였으며, 이를 통해 국내 중소규모 저수지 모니터링에의 활용성을 평가하고자 하였다. Z fuzzy function 기반 임계값 산정을 통한 영상분할기법과 객체 탐지 기반 분할기법인 Chan-vese (CV) 기법을 통해 수체 영역을 산정하였으며, UAV 영상과의 비교를 통해 성능을 정량적으로 평가하였다. 임계값 기반 탐지 정확도는 Sentinel-1의 경우 약 0.87, 0.89, 0.77 (차리, 갈전, 뒷골), Capella의 경우 약 0.78, 0.72, 0.81로 나타났으며, CV 기법 적용 시 모든 저수지에서 정확도가 향상되는 것을 확인하였다(Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Capella는 모든 저수지/분할기법에 대해 수체와 비수체의 경계를 비교적 뚜렷하게 모의하였으나, 고해상도로 인한 speckle noise가 충분히 평활화되지 않아 오탐지 및 미탐지가 다소 발생하였다. 오탐지의 제거를 위해 광학 센서 기반 보조자료를 활용하여 마스킹한 결과, 정확도가 최대 13% 향상되는 것을 확인할 수 있었다. 본 연구 결과를 바탕으로 SAR 위성 기반 더욱 정확한 저수지 탐지가 이루어진다면 소규모 저수지를 포함, 종합적인 가용수량에 대한 연속적인 모니터링이 가능할 것이며, 효과적인 수자원 관리에 기여할 수 있을 것으로 기대된다.


Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

KCI등재

6DeepLabV3+를 이용한 이종 센서의 구름탐지 기법 연구

저자 : 김미정 ( Mi-jeong Kim ) , 고윤호 ( Yun-ho Ko )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 511-521 (11 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

위성영상에서의 구름 탐지 및 제거는 지형관측과 분석을 위해 필수적인 과정이다. 임계값 기반의 구름 탐지 기법은 구름의 물리적인 특성을 이용하여 탐지하므로 안정적인 성능을 보여주지만, 긴 연산시간과 모든 채널의 영상 및 메타데이터가 필요하다는 단점을 가지고 있다. 최근 활발히 연구되고 있는 딥러닝을 활용한 구름탐지 기법은 4개 이하의 채널(RGB, NIR) 영상만을 활용하고도 짧은 연산시간과 우수한 성능을 보여주고 있다. 본 논문에서는 해상도가 다른 이종 데이터 셋을 활용하여 학습데이터 셋에 따른 딥러닝 네트워크 성능 의존도를 확인하였다. 이를 위해 DeepLabV3+ 네트워크를 구름탐지의 채널 별 특징이 추출되도록 개선하고 공개된 두 이종 데이터 셋과 혼합 데이터로 각각 학습하였다. 실험결과 테스트 영상과 다른 종류의 영상으로만 학습한 네트워크에서는 낮은 Jaccard 지표를 보여주었다. 그러나 테스트 데이터와 동종의 데이터를 일부 추가한 혼합 데이터로 학습한 네트워크는 높은 Jaccard 지표를 나타내었다. 구름은 사물과 달리 형태가 구조화 되어 있지 않아 공간적인 특성보다 채널 별 특성을 학습에 반영하는 것이 구름 탐지에 효과적이므로 위성 센서의 채널 별 특징을 학습하는 것이 필요하기 때문이다. 본 연구를 통해 해상도가 다른 이종 센서의 구름탐지는 학습 데이터 셋에 매우 의존적임을 확인하였다.


Cloud detection and removal from satellite images is an essential process for topographic observation and analysis. Threshold-based cloud detection techniques show stable performance because they detect using the physical characteristics of clouds, but they have the disadvantage of requiring all channels' images and long computational time. Cloud detection techniques using deep learning, which have been studied recently, show short computational time and excellent performance even using only four or less channel (RGB, NIR) images. In this paper, we confirm the performance dependence of the deep learning network according to the heterogeneous learning dataset with different resolutions. The DeepLabV3+ network was improved so that channel features of cloud detection were extracted and learned with two published heterogeneous datasets and mixed data respectively. As a result of the experiment, clouds' Jaccard index was low in a network that learned with different kind of images from test images. However, clouds' Jaccard index was high in a network learned with mixed data that added some of the same kind of test data. Clouds are not structured in a shape, so reflecting channel features in learning is more effective in cloud detection than spatial features. It is necessary to learn channel features of each satellite sensors for cloud detection. Therefore, cloud detection of heterogeneous sensors with different resolutions is very dependent on the learning dataset.

KCI등재

7영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험

저자 : 박소연 ( Soyeon Park ) , 강솔아 ( Sol A Kang ) , 박노욱 ( No-wook Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 523-533 (11 pages)

다운로드

(기관인증 필요)

초록보기

이 논문에서는 상호보완적인 공간 및 분광해상도를 가진 다중센서 위성영상을 이용하여 공간해상도와 분광해상도를 향상시키기 위해 영역-점 회귀 크리깅(area-to-point regression kriging, ATPRK) 기반의 2단계 spatio-spectral fusion method (2SSFM)을 제안하였다. 2SSFM은 ATPRK와 random forest 회귀 모형을 결합하여 다중센서 위성영상에서 높은 공간해상도를 갖는 분광 밴드를 예측한다. 첫 번째 단계에서는 다중센서 위성영상 사이의 공간해상도 차이를 감소시키기 위해 ATPRK 기반 공간 상세화를 수행한다. 두 번째 단계에서는 다중센서 위성영상 사이의 분광 밴드의 관계성을 정량화하기 위해 random forest를 이용한 회귀 모델링을 적용하였다. 2SSFM의 예측 성능은 적색 경계와 단파 적외선 밴드를 생성하는 사례 연구를 통해 평가하였다. 사례 연구에서 2SSFM은 실제 분광 밴드와 유사한 분광패턴을 보이면서 공간해상도가 향상된 적색 경계와 단파 적외선 밴드를 생성할 수 있었으며, 2SSFM가 고해상도 위성영상에서 제공하지 않은 분광 밴드 생성에 유용함을 확인할 수 있었다. 따라서 2SSFM을 통해 실제로 획득 불가능하지만 환경 모니터링에 효과적인 분광 밴드를 예측함으로써 다양한 분광 지수를 생성할 수 있을 것으로 기대된다.


This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial downscaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

KCI등재

8드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발

저자 : 류재현 ( Jae-hyun Ryu ) , 한중곤 ( Jung-gon Han ) , 안호용 ( Ho-yong Ahn ) , 나상일 ( Sang-il Na ) , 이병모 ( Byungmo Lee ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 535-543 (9 pages)

다운로드

(기관인증 필요)

초록보기

농업분야에서 드론을 활용하여 작물의 생육을 진단하고 정보를 영상으로 제공하고 있다. 들녘 단위에 대한 고해상도 드론 영상을 활용하는 경우 객체별 생육정보를 생산할 수 있으나 정확하게 작물을 탐지하고 인접한 객체를 효율적으로 구분하기 위한 작업이 요구된다. 본 연구에서는 작물 객체를 탐지하고 위치 정보를 추출하는 알고리즘을 개발하는 것이 목적이다. 드론 다중분광영상과 컴퓨터 비전 기술을 활용하여 객체 탐지를 위한 알고리즘을 개발하였으며, 대상 작물은 가을배추로 선정하였다. 2018년~2020년까지 가을배추를 대상으로 정식 후 7일~15일 사이의 드론 영상을 취득하였으며, 2019년 영상 기반으로 객체 탐지 알고리즘을 개발한 뒤 2018년, 2020년 영상을 기반으로 알고리즘 평가를 수행하였다. 분광반사도 기반 지수와 식생의 분광 반사도 특성을 고려하여 식생 지역을 추출하였다. 이후 추출된 식생 지역에서 객체의 크기를 고려하여 팽창(Dilatation), 침식(Erosion), 이미지 분할 등과 같은 모폴로지(Morphology) 기법을 통해 객체 탐지 정확도를 향상시켰다. 개발된 객체 탐지 알고리즘의 정밀도는 95.19% 이상이었으며, 재현율과 정확도는 각각 95.4%, 93.68% 이상이었다. 객체 탐지 알고리즘의 F1-Score는 0.967 이상으로 나타났다. 본 연구에서 개발한 알고리즘을 이용하여 추출된 배추 객체 중심에 대한 위치 정보는 작물의 재배시기에 따라 영농단계별 의사결정 정보를 제공하기 위한 자료로써 활용될 것이다.


A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.

KCI등재

9Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구

저자 : 이슬기 ( Seulki Lee ) , 송종성 ( Jong-sung Song ) , 이창욱 ( Chang-wook Lee ) , 고보균 ( Bokyun Ko )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 545-557 (13 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

본 연구는 직접적인 접근이 어려운 demilitarized zone (DMZ)의 산불 피해 지역을 파악하기 위하여, 고해상도 위성영상 및 머신러닝 기반의 감독 분류 기법을 이용하였다. 고해상도 위성 영상은 Sentinel-2 A/B를 이용하였으며, SVM 감독분류 기법을 기반으로 토지피복도를 산출하였다. DMZ 산불 피해 지역을 분류하기 위한 최적의 조합을 찾기 위하여 SVM 내에 다양한 커널과 밴드 조합에 따른 감독 분류를 진행하고 오차 행렬을 통해 정확도를 평가하였다. 또한, 2020년, 2021년은 위성영상 자료 기반의 산불 탐지 결과와 산불 연보의 피해 지역 면적 간의 비교를 통한 검증을 수행하였다. 이후, 현재 피해 면적 자료가 없는 2022년의 산불 피해 지역을 탐지함으로써 신뢰할 만한 수준의 결과를 신속적으로 파악하고자 하였다.


This study used high-resolution satellite images and supervised classification technique based on machine learning method in order to detect the areas affected by wildfires in the demilitarized zone (DMZ) where direct access is difficult. Sentinel-2 A/B was used for high-resolution satellite images. Land cover map was calculated based on the SVM supervised classification technique. In order to find the optimal combination to classify the DMZ wildfire damage area, supervised classification according to various kernel and band combinations in the SVM was performed and the accuracy was evaluated through the error matrix. Verification was performed by comparing the results of the wildfire detection based on satellite image and data by the wildfire statistical annual report in 2020 and 2021. Also, wildfire damage areas was detected for which there is no current data in 2022. This is to quickly determine reliable results.

KCI등재

10광학 위성 영상 기반 선박탐지의 정확도 개선을 위한 딥러닝 초해상화 기술의 영향 분석

저자 : 박성욱 ( Seongwook Park ) , 김영호 ( Yeongho Kim ) , 김민식 ( Minsik Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 559-570 (12 pages)

다운로드

(기관인증 필요)

초록보기

광학 위성 영상의 공간해상도가 낮게 되면 크기가 작은 객체들의 경우 객체 탐지의 어려움이 따른다. 따라서 본 연구에서는 위성 영상의 공간해상도를 향상시키는 초해상화(Super-resolution) 기술이 객체 탐지 정확도 향상에 대한 영향이 유의미한지 알아보고자 하였다. 쌍을 이루지 않는(unpaired) 초해상화 알고리즘을 이용하여 Sentinel-2 영상의 공간해상도를 3.2 m로 향상시켰으며, 객체 탐지 모델인 Faster-RCNN, RetinaNet, FCOS, S2ANet을 활용하여 초해상화 적용 유무에 따른 선박 탐지 정확도 변화를 확인했다. 그 결과 선박 탐지 모델의 성능 평가에서 초해상화가 적용된 영상으로 학습된 선박 탐지 모델들에서 Average Precision (AP)가 최소 12.3%, 최대 33.3% 향상됨을 확인하였고, 초해상화가 적용되지 않은 모델에 비해 미탐지 및 과탐지가 줄어듦을 보였다. 이는 초해상화 기술이 객체 탐지에서 중요한 전처리 단계가 될 수 있다는 것을 의미하고, 객체 탐지와 더불어 영상 기반의 다른 딥러닝 기술의 정확도 향상에도 크게 기여할 수 있을 것으로 기대된다.


When a satellite image has low spatial resolution, it is difficult to detect small objects. In this research, we aim to check the effect of super resolution on object detection. Super resolution is a software method that increases the resolution of an image. Unpaired super resolution network is used to improve Sentinel-2's spatial resolution from 10 m to 3.2 m. Faster-RCNN, RetinaNet, FCOS, and S2ANet were used to detect vessels in the Sentinel-2 images. We experimented the change in vessel detection performance when super resolution is applied. As a result, the Average Precision (AP) improved by at least 12.3% and up to 33.3% in the ship detection models trained with the super-resolution image. False positive and false negative cases also decreased. This implies that super resolution can be an important pre-processing step in object detection, and it is expected to greatly contribute to improving the accuracy of other image-based deep learning technologies along with object detection.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1기후변화 시나리오를 고려한 위성영상 기반 미래 탄소흡수량 분포 추정

저자 : 나상일 ( Sang-il Na ) , 안호용 ( Ho-yong Ahn ) , 류재현 ( Jae-hyun Ryu ) , 소규호 ( Kyu-ho So ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 833-845 (13 pages)

다운로드

(기관인증 필요)

초록보기

탄소흡수량 산정 및 토지이용 변화에 대한 이해는 기후변화 연구에서 매우 중요하다. 기존의 연구에서는 토지이용 변화에 따른 탄소흡수량 산정에 원격탐사 기술이 사용되고 있으나 대부분 과거의 탄소흡수량 변화에 초점을 맞추고 있다. 따라서 미래 탄소흡수량 변화 예측 연구는 부족한 실정이다. 본 연구에서 CLUE-S 모형을 사용하여 토지이용 변화를 모의하고 기후변화 시나리오를 고려하여 미래 탄소흡수량의 변화를 예측하였다. 그 결과, RCP 4.5 및 8.5 시나리오에서 탄소흡수량은 각각 7.92, 13.02% 감소되는 것으로 예측되었다. 따라서 본 연구에서 제안한 방법은 다른 기후변화 시나리오를 고려한 미래 탄소흡수량 변화에도 적용이 가능할 것으로 기대된다.

KCI등재

2SAR 영상 정합 정확도 평가를 위한 FSIM 인자 활용 가능성

저자 : 김상완 ( Sang-wan Kim ) , 이동준 ( Dongjun Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 847-859 (13 pages)

다운로드

(기관인증 필요)

초록보기

최근 고해상도 위성 SAR 영상이 늘어남에 따라, 변화탐지, 영상 융합 등 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 커지고 있다. 영상 정합 결과에 대한 정량적 평가는 분석자에 의해 추출된 GCPs (Ground Control Points)를 이용한 RMSE (Root Mean Square Error) 값이 널리 사용되어 왔으나, 영상정합 결과의 정확도를 자동으로 측정하는 방법에 대한 연구는 미비한 실정이다. 본 연구에서는 SAR 영상 정합의 정확도 평가지표로, 단일채널 영상의 품질 평가 알고리즘으로 개발된 FSIM (Feature Similarity) 값을 적용하는 것에 대한 타당성 분석을 수행하였다. 다양한 관측각도 및 관측방향에서 수집된 TerraSAR-X staring spotlight 자료를 분석에 사용하였다. SAR 영상의 공간 해상도에 따른 FSIM 값 변화는 매우 작은 값을 보였다. 따라서, 다양한 공간해상도의 SAR 영상 간에도 동일한 척도를 가지고 FSIM 값을 사용할 수 있다. 단일 SAR 영상을 이용하여 정합 오차에 따른 FSIM값 변화를 분석하였으며, 이 값을 기준으로 서로 다른 관측조건에서 수집된 영상 간의 정합 오차에 따른 FSIM 값 변화를 분석하였다. 서로 다른 관측각 또는 관측방향 자료 조합에서, 관측기하 차이에 의해 FSIM 값은 다소 저하되었다. 토지피복별 FSIM 값 분석 결과에서, 도심지역에서 정합오차에 따른 FSIM 값의 변화가 가장 뚜렷하게 나타났다. 따라서, FSIM 값을 이용하여 영상정합의 정확도를 판별하기 위해서는 도심지역에서 산출된 FSIM 값을 이용하는 것이 바람직하다. FSIM 값은 SAR 영상 정합 정확도에 대한 지표로 사용될 수 있는 충분한 가능성이 있는 것으로 판단된다.

KCI등재

3GOCI와 AHI 자료를 활용한 에어로졸 광학두께 합성장 산출 연구

저자 : 강형우 ( Hyeongwoo Kang ) , 최원이 ( Wonei Choi ) , 박정현 ( Jeonghyun Park ) , 김세린 ( Serin Kim ) , 이한림 ( Hanlim Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 861-870 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 COMS (Communication, Oceanography and Meteorology Satellite) 위성의GOCI (Geostationary Ocean Color Imager) 센서와 Himawari-8 위성의 AHI (Advanced Himawari Imager) 센서에서 산출되는 에어로졸 광학두께 (Aerosol Optical Depth; AOD)를 활용하여 단일화된 AOD 합성장을 생산하였다. 위성 간의 공간해상도와 위치좌표계가 다르기 때문에 이를 맞춰주는 전처리 작업을 선행하였다. 이후 지상관측 기반인 AERONET (AErosol RObotic NETwork)의 레벨 1.5 AOD 자료를 사용하여 각 위성과 AERONET과의 상관관계 분석 및 추세를 보간하여 기존 위성 AOD 보다 정확한 위성 AOD 자료를 생산하였다. 이후 합성과정을 진행하며 최종적으로 시공간적으로 더 완벽하고 정확한 AOD 합성장을 생산하였다. 생산된 AOD 합성장의 제곱근 평균 오차(Root Mean Square Error; RMSE)는 0.13, 평균 편향(mean bias)는 0.05로, 기존의 GOCI AOD (RMSE: 0.15, Mean bias: 0.11)와 AHI AOD (RMSE: 0.15, Mean bias: 0.05) 보다 나은 성능을 보였다. 또한 합성된 AOD는 단일위성에서 구름으로 인하여 관측되지 못한 지역에서 시공간적으로 보다 완벽하게 생산되었음을 확인하였다.

KCI등재

4항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구

저자 : 이성혁 ( Seong-hyeok Lee ) , 이명진 ( Moung-jin Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 871-884 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구의 목적은 항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터를 구축, 검증 및 알고리즘 적용의 효율화 방안을 연구하였다. 이를 위하여 토지피복 8개 항목에 대하여 고해상도의 항공영상 및 Sentinel-2 인공위성에서 얻은 이미지를 사용하여 0.51 m 및 10 m Multi-resolution 데이터셋을 구축하였다. 또한, 학습 데이터의 구성은 Fine data (총 17,000개) 와 Coarse data (총 33,000개)를 동시 구축 및 정밀한 변화 탐지 및 대규모 학습 데이터셋 구축이라는 2가지 목적을 달성하였다. 학습 데이터의 정확도를 위한 검수는 정제 데이터, 어노테이션 및 샘플링으로 3단계로 진행하였다. 최종적으로 검수가 완료된 학습데이터를 Semantic Segmentation 알고리즘 중 U-Net, DeeplabV3+에 적용하여, 결과를 분석하였다. 분석결과 항공영상 기반의 토지피복 평균 정확도는 U- Net 77.8%, Deeplab V3+ 76.3% 및 위성영상 기반의 토지피복에 대한 평균 정확도는 U-Net 91.4%, Deeplab V3+ 85.8%이다. 본 연구를 통하여 구축된 고해상도 항공영상 및 위성영상을 이용한 토지피복 인공지능 학습 데이터셋은 토지피복 변화 및 분류에 도움이 되는 참조자료로 활용이 가능하다. 향후 우리나라 전체를 대상으로 인공지능 학습 데이터셋 구축 시, 토지피복을 연구하는 다양한 인공지능 분야에 활용될 것으로 기대된다.

KCI등재

5천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석

저자 : 김희애 ( Hee-ae Kim ) , 정성래 ( Sung-rae Chung ) , 오수민 ( Soo Min Oh ) , 이병일 ( Byung-il Lee ) , 신인철 ( In-chul Shin )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 885-901 (17 pages)

다운로드

(기관인증 필요)

초록보기

천리안위성 2A호의 2분 주기 고속 관측(rapid-scan) 자료를 이용하여, 가시·수증기·적외 채널의 시간 해상도와 표적의 크기가 해당 채널의 중규모 대기운동벡터 생산에 미치는 영향을 분석하였다. 중규모 대기운동벡터 산출을 위하여 2-10분의 영상 시간 간격 변화 하에서 표적의 크기를 8×8에서 40×40 화소 크기로 변환시키며, 시·공간적인 조건 변화에 따른 벡터 생산량과 평균 속력, 오차 특성의 변화 양상을 비교하였다. 그 결과, 표적의 크기가 작을수록 위성의 시간 간격 변화에 따른 벡터 개수의 변화와, 표준화된 평균 제곱근 편차(Normalized Root Mean Squared Vector Difference; NRMSVD) 값의 변화가 더욱 뚜렷해졌다. 또한 고도별 오차 특성 분석 결과에서는 평균 속력이 낮고 대기 현상의 시·공간 규모가 작은 하층(700-1000 hPa)의 경우, 짧은 시간 간격의 영상 자료와 작은 표적을 이용하는 것이 벡터 산출에 더욱 유리하게 작용하는 것을 확인할 수 있었다. 위성의 시간 간격과 표적의 크기는 대기 순환의 시·공간 규모와 밀접한 연관이 있는 요소이다. 따라서, 대기운동벡터 활용 목적에 맞게 표적 크기와 위성 시간 간격을 최적화하는 과정이 필요하며, 중규모 기상현상의 실황 분석을 위한 대기운동벡터 산출 알고리즘에서는 표적 크기와 영상 시간 간격을 각각 16×16, 4분으로 설정해주는 것이 가장 적합하다고 판단된다.

KCI등재

6오픈소스 GIS 프로그램의 지형인자 계산 비교: 도서지역 경사도와 지형습윤지수 중심으로

저자 : 이보라 ( Bora Lee ) , 이호상 ( Ho-sang Lee ) , 이광수 ( Gwang-soo Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 903-916 (14 pages)

다운로드

(기관인증 필요)

초록보기

지형은 고도, 경사, 측면으로 설명되는 지표면의 물리적인 모양을 나타내는 것으로 지형적 조건에 따라 에너지의 이동이 결정된다. 이것은 태양 에너지를 얼마나 많이 받을지, 바람이나 비가 얼마나 많은 영향을 미칠지 등에 대한 중요한 결정 요인들로 지표면 상에 존재하는 모든 생물, 특히 산림 식생의 입지 환경에 큰 영향을 준다. 도서지역 산림과 같이 자연적으로 형성된 지형 인자가 산림 식생의 생태환경을 결정하는 요인이 될 때 보다 정확한 지형 인자들의 계산은 도서산림의 입지환경을 이해하는데 매우 중요하다. 최근에는 연구자, 학교, 산업 및 정부를 위해 수많은 무료오픈소스 소프트웨어 지리정보시스템 프로그램(Free Open Source Software Geographic Information Systems, FOSS GIS)들이 이러한 지형인자들을 보다 정확하게 계산하기 위해 다양한 알고리즘을 적용하고 있다. FOSS GIS 프로그램은 사용자 요구에 맞게 수정이 가능한 유연한 알고리즘을 제공한다. 이와 같은 수요에 맞춰 이 연구에서는 지형 분석이 특히 중요한 도서지역 산림을 대상으로 하여 FOSS GIS 프로그램들의 지형인자 계산 결과값을 비교해 보고 향후 지역 생태 연구에 있어 지형 인자 계산 방법을 결정할 때 그 기준을 마련하고자 한다. 연구 지역은 전라남도 도서 지역을 대상으로 하였고 FOSS GIS 프로그램 중 가장 널리 사용되는 GRASS GIS와 SAGA GIS로 처리하였다. 입지환경에 있어 가장 널리 사용되는 설명인자인 경사도와 TWI(Topographical Wetness Index) 지도를 각 FOSS GIS 프로그램으로 생성하고 그 차이를 분석하여 각 FOSS GIS 프로그램의 장단점을 토의하였다.

KCI등재

7무인기 기반 다중분광 영상을 이용한 벼 쓰러짐 영역의 특성 분석

저자 : 문현동 ( Hyun-dong Moon ) , 류재현 ( Jae-hyun Ryu ) , 나상일 ( Sang-il Na ) , 장선웅 ( Seon Woong Jang ) , 신서호 ( Seo-ho Sin ) , 조재일 ( Jaeil Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 917-926 (10 pages)

다운로드

(기관인증 필요)

초록보기

벼 쓰러짐은 벼농사의 대표적인 기상재해 피해로써 강한 바람과 강우로 발생한다. 원격탐사 기법은 넓은 지역의 벼 쓰러짐을 효과적으로 탐지하기에 적절한 방법이다. 실제로 벼 쓰러짐은 벼 키가 최대인 생육 시기에 주로 발생하여 군락의 큰 구조적 변화를 불러오기 때문에 분광 반사도 차이를 야기한다. 따라서, 본고에서는 나주에 위치한 전남농업기술원의 2020년 태풍에 의한 논벼 피해를 444 nm부터 842 nm까지 10개 밴드로 구성된 카메라 영상으로 분석하였다. 드론 영상마다 벼 쓰러짐 피해를 받은 영역과 벼 쓰러짐 피해가 없는 영역으로 구분하여 벼 쓰러짐 영역의 분광 반사도 특성 차이와 식생 탐지에 주로 사용되는 식생지수인 NDVI (Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge), CCI (Chlorophyll Carotenoid Index)의 변화를 살펴보았다. 반사도 값의 변화는 밴드6(668 nm)에서 가장 적었으며, 이를 중심으로 밴드 파장이 감소와 증가할수록 일반 논벼 보다 쓰러짐 영역 반사도가 커졌다. 또한, 쓰러진 벼를 묶어 세운 복구 지역은 대부분의 밴드에 걸쳐 반사도가 크게 감소함을 볼 수 있었다. NDVI와 NDRE는 벼 쓰러짐 영역에 대해 민감하게 반응하였으나, 그 반응 대상 및 정도는 서로 달랐다. 본 연구의 결과는 향후 드론과 위성을 이용한 벼 쓰러짐 피해 조사 알고리즘에 기여될 것으로 기대한다.

KCI등재

8신경망 모델을 사용한 편대비행 저궤도위성 가속도계 데이터 예측 기법

저자 : 김민규 ( Mingyu Kim ) , 김정래 ( Jeongrae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 927-938 (12 pages)

다운로드

(기관인증 필요)

초록보기

편대 비행하는 저궤도위성에는 비슷한 크기의 비중력 섭동이 일정한 시간 차이를 두고 가해진다. 이러한 시간상관관계를 이용하면 한 개 위성의 가속도계에서 측정된 가속도 값으로 다른 편대비행 저궤도위성의 비중력가속도를 추정할 수 있다. 편대비행 저궤도위성인 GRACE 및 GRACE-FO 위성에서 한 개 위성의 가속도계 데이터를 사용할 수 없는 기간이 존재하는데, 앞서 기술된 시간 이식 기법이 JPL (Jet Propulsion Laboratory)에서 공식적으로 가속도계 데이터 복원 시 사용되고 있다. 본 논문에서는 기존의 시간 이식 기법의 가속도계 추정 정확도를 개선하기 위하여 신경망 (neural network; NN) 모델 기반 편대비행 저궤도위성 가속도계 데이터 추정 방법을 제안하였다. 시간 이식 기법은 위성의 위치 및 우주환경요소 등을 반영할 수 없지만, NN 모델은 이를 모델 입력으로 사용할 수 있으므로 예측 정확도를 높일 수 있다. 1개월간 NN 모델을 사용하여 가속도계 예측 시험을 수행하고 시간 이식 기법과 예측 정확도를 비교하였다. 그 결과 along-track 및 radial 방향에서 NN 모델의 가속도계 데이터의 예측 오차는 시간 이식 기법에 비해 각각 55.0%, 40.1% 감소하였다.

KCI등재

9산불 후 식생 회복 모니터링을 위한 Sentinel-2 위성영상의 RGB 합성기술

저자 : 김상일 ( Sang-il Kim ) , 안도섭 ( Do-seob Ahn ) , 김승철 ( Seung-chul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 939-946 (8 pages)

다운로드

(기관인증 필요)

초록보기

산불로 인한 피해지역의 산림 변화를 모니터링하는 것은 식생복원에 중요한 정보를 제공하며, 자연 재해를 완화하고 복구하기 위해 공간정보를 가지는 원격탐사 자료는 모니터링에 필요한 유용한 정보를 제공하는 것으로 알려져 있다. 하지만 원격탐사자료를 활용한 복구 측면에 초점 두어 연구된 사례가 미비한 상황이다. 본 연구는 화재 후 식생회복을 모니터링하기 위한 것으로, Sentinel-2 위성 데이터를 사용하여 산불 피해 지역을 모니터링하는 방법을 제시하는 것을 목적으로 한다. 산불피해지역의 식생회복 모니터링을 위해 Tasseled Cap 선형회귀 추세를 기반으로 RGB 합성기술을 제안하였다. 이러한 위성영상을 활용한 원격탐사 시각화 기법을 통해 효과적인 모니터링 가능성을 확인할 수 있었다.

KCI등재

10무인비행체 탑재 다중분광 센서별 반사율 및 식생지수 변화 비교

저자 : 이경도 ( Kyung-do Lee ) , 안호용 ( Ho-yong Ahn ) , 류재현 ( Jae-hyun Ryu ) , 소규호 ( Kyu-ho So ) , 나상일 ( Sang-il Na )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 947-958 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 무인비행체에 탑재해서 활용되고 있는 다중분광 센서의 센서별 반사율 및 식생지수를 산정하여 시계열 작황분석을 위한 센서별, 센서간 활용 가능성을 평가하기 위해 수행하였다. RedEdge-MX, S110 NIR, Sequioa, P4M 등 4종의 무인비행체 탑재 다중분광센서에 대하여 2020년 9월 14일과 9월 15일에 걸쳐 오전, 오후 각 1회, 총 4회씩 항공영상을 촬영하고 반사율 및NDVI를 산정하여 비교하였다. 반사율의 경우 모든 센서에서 시계열 변동계수가 평균 약 10% 이상의 값을 보여 활용에는 한계가 있는 것으로 나타났다. 작물 시험구에 대한 센서별NDVI 변동계수는 식생이 우거져 활력도가 높은 시험구에서 평균 1.2~3.6%의 값을 보여 5% 이내의 변동성을 보였다. 그러나 이는 청천일의 변동계수에 비해서는 높은 값을 보인 것으로서 실험 기간 동안 오전, 오후에 구름 등 기상환경이 달랐기 때문으로 판단되며 시계열 작황 분석을 위한 정밀NDVI 산정 시에는 일정한 광 환경을 유지할 수 있는 촬영 계획 수립과 이행이 필요할 것으로 판단된다. 무인비행체 다중분광센서 간NDVI를 상호 비교한 결과 본 실험에서는 RedEdeg-MX 센서의 경우 안정적인 광 환경 내에서 동종의 센서를 여러 대 사용하더라도NDVI 값의 특별한 보정 없이 함께 활용할 수 있을 것으로 판단된다. RedEdge-MX, P4M, Sequioa 센서는 상호 선형적인 관계를 보였으나NDVI 간의 off-set 보정을 통한 공동 활용 가능성 평가를 위해서는 보완 실험이 필요할 것으로 생각된다.

발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기