Purpose
Cyber deviance of adolescents has become a serious social problem. With a widespread use of smartphones, incidents of cyber deviance have increased in Korea and both quantitative and qualitative damages such as suicide and depression are increasing. Research has been conducted to understand diverse factors that explain adolescents’ delinquency in cyber space. However, most previous studies have focused on a single theory or perspective. Therefore, this study aims to comprehensively analyze motivations of juvenile cyber deviance and to develop a predictive model for delinquent adolescents by integrating four different theories on cyber deviance.
Design/methodology/approach
By using data from Korean Children & Youth Panel Survey 2010, this study extracts 27 potential factors for cyber deivance based on four background theories including general strain, social learning, social bonding, and routine activity theories. Then this study employs econometric analysis to empirically assess the impact of potential factors and utilizes a machine learning approach to predict the likelihood of cyber deviance by adolescents.
Findings
This study found that general strain factors as well as social learning factors have positive effects on cyber deviance. Routine activity-related factors such as real-life delinquent behaviors and online activities also positively influence the likelihood of cyber diviance. On the other hand, social bonding factors such as community commitment and attachment to community lessen the likelihood of cyber deviance while social factors related to school activities are found to have positive impacts on cyber deviance. This study also found a predictive model using a deep learning algorithm indicates the highest prediction performance. This study contributes to the prevention of cyber deviance of teenagers in practice by understanding motivations for adolescents’ delinquency and predicting potential cyber deviants.