논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

KCI등재

The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

Muhammad Fulki Fadhillah , Chang-wook Lee
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 37권1호
  • : 연속간행물
  • : 2021년 02월
  • : 57-67(11pages)
대한원격탐사학회지

DOI


목차

1. Introduction
2. Method
3. Result
4. Discussion
5. Conclusions
Acknowledgments
References

키워드 보기


초록 보기

An earthquake occurred on 17 November 2017 in Pohang, South Korea with a strength of 5.4 Mw. This is the second strongest earthquake recorded by local authorities since the equipment was first installed. In order to improve understanding of earthquakes and surface deformation, many studies have been conducted according to these phenomena. In this research, we will estimate the surface deformation using the Okada model equation. The SAR images of three satellites with different wavelengths (ALOS-2, Cosmo SkyMed and Sentinel-1) were used to produce the interferogram pairs. The interferogram is used as a reference for surface deformation changes by using Okada to determine the source of surface deformation that occurs during an earthquake. The Non-linear optimization (Levemberg-Marquadrt algorithm) and Monte Carlo restart was applied to optimize the fault parameter on modeling process. Based on the modeling results of each satellite data, the fault geometry is ~6 km length, ~2 km width and ~5 km depth. The root mean square error values in the surface deformation model results for Sentinel, CSK and ALOS are 0.37 cm, 0.79 cm and 1.47 cm, respectively. Furthermore, the results of this modeling can be used as learning material in understanding about seismic activity to minimize the impacts that arise in the future.

UCI(KEPA)

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2021
  • : 1640


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

37권4호(2021년 08월) 수록논문
최근 권호 논문
| | | |

KCI등재

1Analyzing the Evolution of Summer Thermal Anomalies in Busan Using Remote Sensing and Spatial Statistical Tool

저자 : Nkwain Wilfred Njungwi , Daeun Lee , Minji Kim , Cheonggil Jin , Chuluong Choi

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 665-685 (21 pages)

다운로드

(기관인증 필요)

초록보기

This study focused on the a 20-year evaluation of the dynamism of critical thermal anomalies in Busan metropolitan area prompted by unusual infrastructural development and demographic growth rate. Archived Landsat thermal data derived-LST was the major input for UTFVI and hot spot analysis (Getis-Ord Gi). Results revealed that the surface urban heat island-affected area has gradually expanded overtime from 23.32% to 32.36%; while the critical positive thermal anomalies (level-3 hotspots) have also spatially increased from 19.88% in 2000 to 23.56% in 2020, recording a net LST difference of > 5°C between the maximum level-3 hotspot and minimum level-3 coldspot each year. It is been observed that thermal conditions of Busan have gradually deteriorated with time, which is potentially inherent in the rate of urban expansion. Thus, this work serves as an eye-opener to powers that be, to think and act constructively towards a sustainable thermal conform for city dwellers.

KCI등재

2Application of High-spatial-resolution Satellite Images to Monitoring Coral Reef Habitat Changes at Weno Island Chuuk, Micronesia

저자 : Jong-kuk Choi , Joo-hyung Ryu , Jee-eun Min

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 687-698 (12 pages)

다운로드

(기관인증 필요)

초록보기

We present quantitative estimations of changes in the areal extent of coral reef habitats at Weno Island, Micronesia, using high-spatial-resolution remote sensing images and field observations. Coral reef habitat maps were generated from Kompsat-2 satellite images for September 2008 and September 2010, yielding classifications with 78.6% and 72.4% accuracy, respectively, which is a relatively high level of agreement. The difference between the number of pixels occupied by each seabed type was calculated, revealing that the areal extent of living corals decreased by 8.2 percentage points between 2008 and 2010. This result is consistent with a comparison of the seabed types determined by field observations. This study can be used as a basis for remediation planning to diminish the impact of changes in coral reefs.

KCI등재

3Analysis of Spectral Reflectance Characteristics Using Hyperspectral Sensor at Diverse Phenological Stages of Soybeans

저자 : Seung-hwan Go , Jin-ki Park , Jong-hwa Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 699-717 (19 pages)

다운로드

(기관인증 필요)

초록보기

South Korea is pushing for the advancement of crop production technology to achieve food self-sufficiency and meet the demand for safe food. A medium-sized satellite for agriculture is being launched in 2023 with the aim of collecting and providing information on agriculture, not only in Korea but also in neighboring countries. The satellite is to be equipped with various sensors, though reference data for ground information are lacking. Hyperspectral remote sensing combined with 1st derivative is an efficient tool for the identification of agricultural crops. In our study, we develop a system for hyperspectral analysis of the ground-based reflectance spectrum, which is monitored seven times during the cultivation period of three soybean crops using a PSR-2500 hyperspectral sensor. In the reflection spectrum of soybean canopy, wavelength variations correspond with stages of soybean growths. The spectral reflection characteristics of soybeans can be divided according to growth into the vegetative (V) stage and the reproductive (R) stage. As a result of the first derivative analysis of the spectral reflection characteristics, it is possible to identify the characteristics of each wavelength band. Using our developed monitoring system, we observed that the near-infrared (NIR) variation was largest during the vegetative (V1-V3) stage, followed by a similar variation pattern in the order of red-edge and visible. In the reproductive stage (R1-R8), the effect of the shape and color of the soybean leaf was reflected, and the pattern is different from that in the vegetative (V) stage. At the R1 to R6 stages, the variation in NIR was the largest, and red-edge and green showed similar variation patterns, but red showed little change. In particular, the reflectance characteristics of the R1 stage provides information that could help us distinguish between the three varieties of soybean that were studied. In the R7-R8 stage, close to the harvest period, the red-edge and NIR variation patterns and the visible variation patterns changed. These results are interpreted as a result of the large effects of pigments such as chlorophyll for each of the three soybean varieties, as well as from the formation and color of the leaf and stem. The results obtained in this study provide useful information that helps us to determine the wavelength width and range of the optimal band for monitoring and acquiring vegetation information on crops using satellites and unmanned aerial vehicles (UAVs)

KCI등재

4Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

저자 : Geun-ho Kwak , No-wook Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 719-731 (13 pages)

다운로드

(기관인증 필요)

초록보기

This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

KCI등재

5Analysis of Growth Characteristics Using Plant Height and NDVI of Four Waxy Corn Varieties Based on UAV Imagery

저자 : Chan-hee Jeong , Jong-hwa Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 733-745 (13 pages)

다운로드

(기관인증 필요)

초록보기

Although waxy corn varieties developed after the 1980s show differences depending on development stages and conditions, studies on the characteristics of waxy corn during the growth stage are rare. The subject of this study was a field survey and unmanned aerial vehicle (UAV) image acquisition of four waxy corn varieties cultivated in Idam-ri, Gammul-myeon, Goesan-gun, Korea. The study was conducted in four stages at intervals of two weeks after planting in 2019. The growth characteristics of each of the four varieties were analyzed using growth curves obtained based on field survey and UAV imagery data. The characteristics of each growth stage of the four varieties of corn, as assessed using normalized difference vegetation index (NDVI) and plant height (P.H.) values, were as follows. The growth model was identified as a model in which three-parameter logistic (3PL) curves reflect the growth characteristics of corn well. In particular, it was found that the variations in growth rate shown by P.H. and NDVI values clearly explain the differences between corn varieties. Among the four cultivars, growth and development first occurred at the early vegetative stage in Daehakchal, followed by Mibaek 2, Miheukchal, and finally Hwanggeummatchal. The variations in P.H. and NDVI were achieved quickly and earlier in Daehakchal, followed by Mibaek 2, Hwanggeummatchal, and Miheukchal. It was confirmed that these results reflected the characteristics of the fast white-type varieties, while the black-type varieties were delayed, as in a previous study. These results reflect the resistance to lodging that affects the cultivation environment and the response characteristics to nutrients and moisture. It was confirmed that UAV accurately provides growth information that is very useful for analyzing the growth characteristics of each corn variety.

KCI등재

6Aerial Dataset Integration For Vehicle Detection Based on YOLOv4

저자 : Wael Omar , Youngon Oh , Jinwoo Chung , Impyeong Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 747-761 (15 pages)

다운로드

(기관인증 필요)

초록보기

With the increasing application of UAVs in intelligent transportation systems, vehicle detection for aerial images has become an essential engineering technology and has academic research significance. In this paper, a vehicle detection method for aerial images based on the YOLOv4 deep learning algorithm is presented. At present, the most known datasets are VOC (The PASCAL Visual Object Classes Challenge), ImageNet, and COCO (Microsoft Common Objects in Context), which comply with the vehicle detection from UAV. An integrated dataset not only reflects its quantity and photo quality but also its diversity which affects the detection accuracy.
The method integrates three public aerial image datasets VAID, UAVD, DOTA suitable for YOLOv4. The training model presents good test results especially for small objects, rotating objects, as well as compact and dense objects, and meets the real-time detection requirements. For future work, we will integrate one more aerial image dataset acquired by our lab to increase the number and diversity of training samples, at the same time, while meeting the real-time requirements.

KCI등재

7Establishment of Priority Update Area for Land Coverage Classification Using Orthoimages and Serial Cadastral Maps

저자 : Junyoung Song , Taeyeon Won , Su Min Jo , Yang Dam Eo , Jin Sue Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 763-776 (14 pages)

다운로드

(기관인증 필요)

초록보기

This paper introduces a method of selecting priority update areas for subdivided land cover maps by training orthoimages and serial cadastral maps in a deep learning model. For the experiment, orthoimages and serial cadastral maps were obtained from the National Spatial Data Infrastructure Portal. Based on the VGG-16 model, 51,470 images were trained on 33 subdivided classifications within the experimental area and an accuracy evaluation was conducted. The overall accuracy was 61.42%. In addition, using the differences in the classification prediction probability of the misclassified polygon and the cosine similarity that numerically expresses the similarity of the land category features with the original subdivided land cover class, the cases were classified and the areas in which the boundary setting was incorrect and in which the image itself was determined to have a problem were identified as the priority update polygons that should be checked by operators.

KCI등재

8Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method)

저자 : Youjeong Youn , Seoyeon Kim , Yemin Jeong , Subin Cho , Jonggu Kang , Geunah Kim , Yangwon Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 777-788 (12 pages)

다운로드

(기관인증 필요)

초록보기

Since aerosol has a relatively short duration and significant spatial variation, satellite observations become more important for the spatially and temporally continuous quantification of aerosol. However, optical remote sensing has the disadvantage that it cannot detect AOD (Aerosol Optical Depth) for the regions covered by clouds or the regions with extremely high concentrations. Such missing values can increase the data uncertainty in the analyses of the Earth's environment. This paper presents a spatial gap-filling framework using a univariate statistical method such as DCT-PLS (Discrete Cosine Transform-based Penalized Least Square Regression) and FMM (Fast Matching Method) inpainting. We conducted a feasibility test for the hourly AOD product from AHI (Advanced Himawari Imager) between January 1 and December 31, 2019, and compared the accuracy statistics of the two spatial gap-filling methods. When the null-pixel area is not very large (null-pixel ratio < 0.6), the validation statistics of DCT-PLS and FMM techniques showed high accuracy of CC=0.988 (MAE=0.020) and CC=0.980 (MAE=0.028), respectively. Together with the AI-based gap-filling method using extra explanatory variables, the DCT-PLS and FMM techniques can be tested for the low-resolution images from the AMI (Advanced Meteorological Imager) of GK2A (Geostationary Korea Multi-purpose Satellite 2A), GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI2 (Geostationary Ocean Color Imager) of GK2B (Geostationary Korea Multi-purpose Satellite 2B) and the high-resolution images from the CAS500 (Compact Advanced Satellite) series soon.

KCI등재

9The Potential of Sentinel-1 SAR Parameters in Monitoring Rice Paddy Phenological Stages in Gimhae, South Korea

저자 : Nawally Umutoniwase , Seung-kuk Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 789-802 (14 pages)

다운로드

(기관인증 필요)

초록보기

Synthetic Aperture Radar (SAR) at C-band is an ideal remote sensing system for crop monitoring owing to its short wavelength, which interacts with the upper parts of the crop canopy. This study evaluated the potential of dual polarimetric Sentinel-1 at C-band for monitoring rice phenology. Rice phenological variations occur in a short period. Hence, the short revisit time of Sentinel-1 SAR system can facilitate the tracking of short-term temporal morphological variations in rice crop growth. The sensitivity of SAR backscattering coefficients, backscattering ratio, and polarimetric decomposition parameters on rice phenological stages were investigated through a time-series analysis of 33 Sentinel-1 Single Look Complex images collected from 10th April to 25th October 2020 in Gimhae, South Korea. Based on the observed temporal variations in SAR parameters, we could identify and distinguish the phenological stages of the Gimhae rice growth cycle. The backscattering coefficient in VH polarisation and polarimetric decomposition parameters showed high sensitivity to rice growth. However, amongst SAR parameters estimated in this study, the VH backscattering coefficient realistically identifies all phenological stages, and its temporal variation patterns are preserved in both Sentinel-1A (S1A) and Sentinel-1B (S1B). Polarimetric decomposition parameters exhibited some offsets in successive acquisitions from S1A and S1B. Further studies with data collected from various incidence angles are crucial to determine the impact of different incidence angles on polarimetric decomposition parameters in rice paddy fields.

KCI등재

10Shoreline Changes and Erosion Protection Effects in Cotonou of Benin in the Gulf of Guinea

저자 : Chan-su Yang , Dae-woon Shin , Min-jeong Kim , Won-jun Choi , Ho-kun Jeon

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 803-813 (11 pages)

다운로드

(기관인증 필요)

초록보기

Coastal erosion has been a threat to coastal communities and emerged as an urgent problem. Among the coastal communities that are under perceived threat, Cotonou located in Benin, West Africa, is considered as one of the most dangerous area due to its high vulnerability. To address this problem, in 2013, the Benin authorities established seven groynes at east of Cotonou port, and two additional intermediate groynes have recently been integrated in April 2018. However, there is no quantitative analysis of groynes so far, so it is hard to know how effective they have been. To analyze effectiveness, we used optical satellite images from different time periods, especially 2004 and 2020, and then compared changes in length, width and area of shoreline in Cotonou. The study area is divided into two sectors based on the location of Cotonou port. The difference of two areas is that Sector 2 has groynes installed while Sector 1 hasn't. As result of this study, shoreline in Sector 1 showed accretion by recovering 1.20 ㎢ of area. In contrast, 3.67 ㎢ of Sector 2 disappeared due to coastal erosion, although it has groynes. This may imply that groynes helped to lessen the rate of average erosion, however, still could not perfectly stop the coastal erosion in the area. Therefore, for the next step, we assume it is recommended to study how to maximize effectiveness of groynes.

12
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1Flow Velocity Change of David Glacier, East Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking Method

저자 : Jihyun Moon , Yuri Cho , Hoonyol Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 1-11 (11 pages)

다운로드

(기관인증 필요)

초록보기

This study measures the change of ice flow velocity of David Glacier, one of the fast-moving glaciers in East Antarctica that drains through Drygalski Ice Tongue. In order to effectively observe the rapid flow velocity, we applied the offset tracking technique to Sentinel-1A SAR images obtained from 2016 to 2020 with 36-day temporal baseline. The resulting velocity maps were averaged and the two relatively fast points (A1 and A2) were selected for further time-series analysis. The flow velocity increased during the Antarctic summer (around December to March) over the four years' observation period probably due to the ice surface melting and reduced friction on the ice bottom. Bedmap2 showed that the fast flow velocities at A1 and A2 are associated with a sharp decrease in the ice surface and bottom elevation so that ice volumetric cross-section narrows down and the crevasses are being created on the ice surface. The local maxima in standard deviation of ice velocity, S1 and S2, showed random temporal fluctuation due to the rotational ice swirls causing error in offset tracking method. It is suggested that more robust offset tracking method is necessary to incorporate rotational motion.

KCI등재

2Damage Proxy Map (DPM) of the 2016 Gyeongju and 2017 Pohang Earthquakes Using Sentinel-1 Imagery

저자 : Arip Syaripudin Nur , Chang-wook Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 13-22 (10 pages)

다운로드

(기관인증 필요)

초록보기

The ML 5.8 earthquake shocked Gyeongju, Korea, at 11:32:55 UTC on September 12, 2016. One year later, on the afternoon of November 15, 2017, the ML 5.4 earthquake occurred in Pohang, South Korea. The earthquakes injured many residents, damaged buildings, and affected the economy of Gyeongju and Pohang. The damage proxy maps (DPMs) were generated from Sentinel-1 synthetic aperture radar (SAR) imagery by comparing pre- and co-events interferometric coherences to identify anomalous changes that indicate damaged by the earthquakes. DPMs manage to detect coherence loss in residential and commercial areas in both Gyeongju and Pohang earthquakes. We found that our results show a good correlation with the Korea Meteorological Administration (KMA) report with Modified Mercalli Intensity (MMI) scale values of more than VII (seven). The color scale of Sentinel-1 DPMs indicates an increasingly significant change in the area covered by the pixel, delineating collapsed walls and roofs from the official report. The resulting maps can be used to assess the distribution of seismic damage after the Gyeongju and Pohang earthquakes and can also be used as inventory data of damaged buildings to map seismic vulnerability using machine learning in Gyeongju or Pohang.

KCI등재

3Design of LEO Constellations with Inter-satellite Connects Based on the Performance Evaluation of the Three Constellations SpaceX, OneWeb and Telesat

저자 : Peng Zong , Saeid Kohani

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 23-40 (18 pages)

다운로드

(기관인증 필요)

초록보기

The idea of designing LEO's satellite constellations has become very important for internet access. Several LEO satellite constellations have been designed and used for global communications. In this paper, by examining three LEO satellite constellations, namely SpaceX's 4425 satellites Ku-Kaband system, OneWeb's 720 satellites Ku-Ka-band system, Telesat's 117 satellites Ka-band system. And evaluating the power of data transmission and their telecommunications, we come close to a conceptual design area. First with the mathematical modeling and formulation and the design of inter-orbital communications for satellites, intersatellite communications, inter-orbital communications, we get a complete design based on the genetic algorithm for LEO satellite constellation design. And then, using simulations and design software, the final results of the designed model are obtained. Finally, we compare the results of the designed model with other existing LEO satellite constellations.

KCI등재

4Improvement of Thunderstorm Detection Method Using GK2A/AMI, RADAR, Lightning, and Numerical Model Data

저자 : Ha-yeong Yu , Myoung-seok Suh , Seoung-oh Ryu

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 41-55 (15 pages)

다운로드

(기관인증 필요)

초록보기

To detect thunderstorms occurring in Korea, National Meteorological Satellite Center (NMSC) also introduced the rapid-development thunderstorm (RDT) algorithm developed by EUMETSAT. At NMCS, the H-RDT (HR) based on the Himawari-8 satellite and the K-RDT (KR) which combines the GK2A convection initiation output with the RDT were developed. In this study, we optimized the KR (KU) to improve the detection level of thunderstorms occurring in Korea. For this, we used all available data, such as GK2A/AMI, RADAR, lightning, and numerical model data from the recent two years (2019-2020). The machine learning of logistic regression and stepwise variable selection was used to optimize the KU algorithms. For considering the developing stages and duration time of thunderstorms, and data availability of GK2A/AMI, a total of 72 types of detection algorithms were developed. The level of detection of the KR, HR, and KU was evaluated qualitatively and quantitatively using lightning and RADAR data. Visual inspection using the lightning and RADAR data showed that all three algorithms detect thunderstorms that occurred in Korea well. However, the level of detection differs according to the lightning frequency and day/night, and the higher the frequency of lightning, the higher the detection level is. And the level of detection is generally higher at night than day. The quantitative verification of KU using lightning (RADAR) data showed that POD and FAR are 0.70 (0.34) and 0.57 (0.04), respectively. The verification results showed that the detection level of KU is slightly better than that of KR and HR.

KCI등재

5The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

저자 : Muhammad Fulki Fadhillah , Chang-wook Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 57-67 (11 pages)

다운로드

(기관인증 필요)

초록보기

An earthquake occurred on 17 November 2017 in Pohang, South Korea with a strength of 5.4 Mw. This is the second strongest earthquake recorded by local authorities since the equipment was first installed. In order to improve understanding of earthquakes and surface deformation, many studies have been conducted according to these phenomena. In this research, we will estimate the surface deformation using the Okada model equation. The SAR images of three satellites with different wavelengths (ALOS-2, Cosmo SkyMed and Sentinel-1) were used to produce the interferogram pairs. The interferogram is used as a reference for surface deformation changes by using Okada to determine the source of surface deformation that occurs during an earthquake. The Non-linear optimization (Levemberg-Marquadrt algorithm) and Monte Carlo restart was applied to optimize the fault parameter on modeling process. Based on the modeling results of each satellite data, the fault geometry is ~6 km length, ~2 km width and ~5 km depth. The root mean square error values in the surface deformation model results for Sentinel, CSK and ALOS are 0.37 cm, 0.79 cm and 1.47 cm, respectively. Furthermore, the results of this modeling can be used as learning material in understanding about seismic activity to minimize the impacts that arise in the future.

KCI등재

6Moon Phase based Threshold Determination for VIIRS Boat Detection

저자 : Euihyun Kim , Sang-wan Kim , Hahn Chul Jung , Joo-hyung Ryu

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 69-84 (16 pages)

다운로드

(기관인증 필요)

초록보기

Awareness of boats is a main issue in areas of fishery management, illegal fishing, and maritime traffic, etc. For the awareness, Automatic Identification System (AIS) and Vessel-Pass System (V-PASS) have been widely used to collect the boat-related information. However, only using these systems makes it difficult to collect the accurate information. Recently, satellite-based data has been increasingly used as a cooperative system. In 2015, U.S. National Oceanic and Atmospheric Administration (NOAA) developed a boat detection algorithm using Visible Infrared Imaging Radiometer Suite (VIIRS) Day & Night Band (DNB) data. Although the detections have been widely utilized in many publications, it is difficult to estimate the night-time fishing boats immediately. Particularly, it is difficult to estimate the threshold due to the lunar irradiation effect. This effect must be corrected to apply a single specific threshold. In this study, the moon phase was considered as the main frequency of this effect. Considering the moon phase, relational expressions are derived and then used as offsets for relative correction. After the correction, it shows a significant reduction in the standard deviation of the threshold compared to the threshold of NOAA. Through the correction, this study can set a constant threshold every day without determination of different thresholds. In conclusion, this study can achieve the detection applying the single specific threshold regardless of the moon phase.

KCI등재

7Study on Dimensionality Reduction for Sea-level Variations by Using Altimetry Data around the East Asia Coasts

저자 : Do-hyun Hwang , Suho Bak , Min-ji Jeong , Na-kyeong Kim , Mi-so Park , Bo-ram Kim , Hong-joo Yoon

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 85-95 (11 pages)

다운로드

(기관인증 필요)

초록보기

Recently, as data mining and artificial neural network techniques are developed, analyzing large amounts of data is proposed to reduce the dimension of the data. In general, empirical orthogonal function (EOF) used to reduce the dimension in the ocean data and recently, Self-organizing maps (SOM) algorithm have been investigated to apply to the ocean field. In this study, both algorithms used the monthly Sea level anomaly (SLA) data from 1993 to 2018 around the East Asia Coasts. There was dominated by the influence of the Kuroshio Extension and eddy kinetic energy. It was able to find the maximum amount of variance of EOF modes. SOM algorithm summarized the characteristic of spatial distributions and periods in EOF mode 1 and 2. It was useful to find the change of SLA variable through the movement of nodes. Node 1 and 5 appeared in the early 2000s and the early 2010s when the sea level was high. On the other hand, node 2 and 6 appeared in the late 1990s and the late 2000s, when the sea level was relatively low. Therefore, it is considered that the application of the SOM algorithm around the East Asia Coasts is well distinguished. In addition, SOM results processed by SLA data, it is able to apply the other climate data to explain more clearly SLA variation mechanisms.

KCI등재

8Retrieval of High-Resolution Grid Type Visibility Data in South Korea Using Inverse Distance Weighting and Kriging

저자 : Taeho Kang , Myoung-seok Suh

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 97-110 (14 pages)

다운로드

(기관인증 필요)

초록보기

Fog can cause large-scale human and economic damages, including traffic systems and agriculture. So, Korea Meteorological Administration is operating about 290 visibility meters to improve the observation level of fog. However, it is still insufficient to detect very localized fog. In this study, high-resolution grid-type visibility data were retrieved from irregularly distributed visibility data across the country. To this end, three objective analysis techniques (Inverse Distance Weighting (IDW), Ordinary Kriging (OK) and Universal Kriging (UK)) were used. To find the best method and parameters, sensitivity test was performed for the effective radius, power parameter and variogram model that affect the level of objective analysis. Also, the effect of data distribution characteristics (level of normality) on the performance level of objective analysis was evaluated. IDW showed a relatively high level of objective analysis in terms of bias, RMSE and correlation, and the performance is inversely proportional to the effective radius and power parameter. However, the two Krigings showed relatively low level of objective analysis, in particular, greatly weakened the variability of the variables, although the level of output was different depending on the variogram model used. As the level of objective analysis is greatly influenced by the distribution characteristics of data, power, and models used, care should be taken when selecting objective analysis techniques and parameters.

KCI등재

9Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

저자 : Doyoung Jeong , Yongil Kim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 111-122 (12 pages)

다운로드

(기관인증 필요)

초록보기

Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

KCI등재

10The Assessment of Cross Calibration/Validation Accuracy for KOMPSAT-3 Using Landsat 8 and 6S

저자 : Cheonggil Jin , Chuluong Choi

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 123-137 (15 pages)

다운로드

(기관인증 필요)

초록보기

In this study, we performed cross calibration of KOMPSAT-3 AEISS imaging sensor with reference to normalized pixels in the Landsat 8 OLI scenes of homogenous ROI recorded by both sensors between January 2014 and December 2019 at the Libya 4 PICS. Cross calibration is using images from a stable and well-calibrated satellite sensor as references to harmonize measurements from other sensors and/or characterize other sensors. But cross calibration has two problems; RSR and temporal difference. The RSR of KOMPSAT-3 and Landsat 8 are similar at the blue and green bands. But the red and NIR bands have a large difference. So we calculate SBAF of each sensor. We compared the SBAF estimated from the TOA Radiance simulation with KOMPSAT-3 and Landsat 8, the results displayed a difference of about 2.07~2.92% and 0.96~1.21% in the VIS and NIR bands. Before SBAF, Reflectance and Radiance difference was 0.42~23.23%. Case of difference temporal, we simulated by 6S and Landsat 8 for alignment the same acquisition time. The SBAF-corrected cross calibration coefficients using KOMPSAT-3, 6S and simulated Landsat 8 compared to the initial cross calibration without correction demonstrated a percentage difference in the spectral bands of about 0.866~1.192%. KOMPSAT-3 maximum uncertainty was estimated at 3.26~3.89%; errors due to atmospheric condition minimized to less than 1% (via 6S); Maximum deviation of KOMPSAT-3 DN was less than 1%. As the result, the results affirm that SBAF and 6s simulation enhanced cross-calibration accuracy.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기