논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

KCI등재

The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

Muhammad Fulki Fadhillah , Chang-wook Lee
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 37권1호
  • : 연속간행물
  • : 2021년 02월
  • : 57-67(11pages)
대한원격탐사학회지

DOI


목차

1. Introduction
2. Method
3. Result
4. Discussion
5. Conclusions
Acknowledgments
References

키워드 보기


초록 보기

An earthquake occurred on 17 November 2017 in Pohang, South Korea with a strength of 5.4 Mw. This is the second strongest earthquake recorded by local authorities since the equipment was first installed. In order to improve understanding of earthquakes and surface deformation, many studies have been conducted according to these phenomena. In this research, we will estimate the surface deformation using the Okada model equation. The SAR images of three satellites with different wavelengths (ALOS-2, Cosmo SkyMed and Sentinel-1) were used to produce the interferogram pairs. The interferogram is used as a reference for surface deformation changes by using Okada to determine the source of surface deformation that occurs during an earthquake. The Non-linear optimization (Levemberg-Marquadrt algorithm) and Monte Carlo restart was applied to optimize the fault parameter on modeling process. Based on the modeling results of each satellite data, the fault geometry is ~6 km length, ~2 km width and ~5 km depth. The root mean square error values in the surface deformation model results for Sentinel, CSK and ALOS are 0.37 cm, 0.79 cm and 1.47 cm, respectively. Furthermore, the results of this modeling can be used as learning material in understanding about seismic activity to minimize the impacts that arise in the future.

UCI(KEPA)

I410-ECN-0102-2022-400-000357780

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1764


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권3호(2022년 06월) 수록논문
최근 권호 논문
| | | |

KCI등재

1Landsat영상을 이용한 토지피복 변화에 따른 행정중심복합도시의 표면 열섬현상 변화분석

저자 : 이경일 ( Kyungil Lee ) , 임철희 ( Chul-hee Lim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 225-236 (12 pages)

다운로드

(기관인증 필요)

초록보기

도시의 인구 증가와 이에 따른 개발로 인한 도시화는 도시 내 열섬현상과 같은 다양한 환경문제를 유발할 수 있다. 특히 계획적으로 구축되는 신도시의 경우 짧은 기간에 진행되는 급격한 도시화로 인한 도시 기후의 변화를 분석하기에 적절한 연구대상지로 여겨진다. 본 연구에서는 Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) 위성영상을 활용하여 세종특별자치시 내 행정중심복합도시의 2013년부터 2020년 개발계획에 의한 토지피복 변화와 이에 따른 표면 열섬현상의 변화를 분석하였다. 이를 위해 위성영상에서 제공하는 열적외선 밴드값과 방사율을 고려하여 지표면온도를 산출하고, 이를 기반으로 표면 열섬현상 강도와 Urban Thermal Field Variance Index (UTFVI)의 변화분석을 수행하였다. 개발이 진행됨에 따른 토지피복 변화 및 피복별 열섬현상 강도의 차이 확인을 위해 환경부에서 제공하는 중분류 토지피복지도를 활용하였다. 분석 결과, 연구지역의 시가화 면적은 15% 증가하였고 자연식생은 28% 이상 줄어든 것이 확인되었다. 또한 이에 따른 열섬현상의 확장 및 강도 증가가 관측되었고, 열섬현상이 발생된 지역의 생태적 수준은 매우 낮은 것을 확인하였다. 본 연구를 통해 급격한 도시화에 따른 열 환경의 정량적 변화 및 생태적 수준을 확인하고, 주거환경의 열 환경 개선을 위한 추가적인 정책의 필요성이 제시될 수 있다.


Urbanization due to population growth and regional development can cause various environmental problems, such as the urban heat island phenomenon. A planned city is considered an appropriate study site to analyze changes in urban climate caused by rapid urbanization in a short-term period. In this study, changes in land cover and surface heat island phenomenon were analyzed according to the development plan in Sejong City from 2013 to 2020 using Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite imagery. The surface temperature was calculated in consideration of the thermal infrared band value provided by the satellite image and the emissivity, and based on this the surface heat island effect intensity and Urban Thermal Field Variance Index (UTFVI) change analysis were performed. The level-2 land cover map provided by the Ministry of Environment was used to confirm the change in land cover as the development progressed and the difference in the surface heat island intensity by each land cover. As a result of the analysis, it was confirmed that the urbanized area increased by 15% and the vegetation decreased by more than 28%. Expansion and intensification of the heat island phenomenon due to urban development were observed, and it was confirmed that the ecological level of the area where the heat island phenomenon occurred was very low. Therefore, It can suggest the need for a policy to improve the residential environment according to the quantitative change of the thermal environment due to rapid urbanization.

KCI등재

2딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구

저자 : 박수호 ( Suho Bak ) , 김흥민 ( Heung-min Kim ) , 이희원 ( Heeone Lee ) , 한정익 ( Jeong-ik Han ) , 김탁영 ( Tak-young Kim ) , 임재영 ( Jae-young Lim ) , 장선웅 ( Seon Woong Jang )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 237-250 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 딥러닝 기반 다중 객체 추적 모델을 활용하여 수중드론으로 촬영된 영상으로부터 특정 해역의 조식동물 현존량을 추정하는 방법을 제안한다. 수중드론 영상 내에 포함된 조식동물을 클래스 별로 탐지하기 위해 YOLOv5 (You Only Look Once version 5)를 활용하였으며, 개체수 집계를 위해 DeepSORT (Deep Simple Online and real-time tracking)를 활용하였다. GPU 가속기를 활용할 수 있는 워크스테이션 환경에서 두 모델의 성능 평가를 수행하였으며, YOLOv5 모델은 평균 0.9 이상의 모델의 정확도(mean Average Precision, mAP)를 보였으며, YOLOv5s 모델과 DeepSORT 알고리즘을 활용하였을 때, 4 k 해상도 기준 약 59 fps의 속도를 보이는 것을 확인하였다. 실해역 적용 결과 약 28%의 과대 추정하는 경향이 있었으나 객체 탐지 모델만 활용하여 현존량을 추정하는 것과 비교했을 때 오차 수준이 낮은 것을 확인하였다. 초점을 상실한 프레임이 연속해서 발생할 때와 수중드론의 조사 방향이 급격히 전환되는 환경에서의 정확도 향상을 위한 후속 연구가 필요하지만 해당 문제에 대한 개선이 이루어진다면, 추후 조식동물 구제 사업 및 모니터링 분야의 의사결정 지원자료 생산에 활용될 수 있을 것으로 판단된다.


In this study, we propose a method to estimate the biomass of invertebrate grazers from the videos with underwater drones by using a multi-object tracking model based on deep learning. In order to detect invertebrate grazers by classes, we used YOLOv5 (You Only Look Once version 5). For biomass estimation we used DeepSORT (Deep Simple Online and real-time tracking). The performance of each model was evaluated on a workstation with a GPU accelerator. YOLOv5 averaged 0.9 or more mean Average Precision (mAP), and we confirmed it shows about 59 fps at 4 k resolution when using YOLOv5s model and DeepSORT algorithm. Applying the proposed method in the field, there was a tendency to be overestimated by about 28%, but it was confirmed that the level of error was low compared to the biomass estimation using object detection model only. A follow-up study is needed to improve the accuracy for the cases where frame images go out of focus continuously or underwater drones turn rapidly. However, should these issues be improved, it can be utilized in the production of decision support data in the field of invertebrate grazers control and monitoring in the future.

KCI등재

3Azimuth Stitching 없는 ScanSAR 영상화: 시간영역 교차상관

저자 : 원중선 ( Joong-sun Won )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 251-263 (13 pages)

다운로드

(기관인증 필요)

초록보기

이 논문은 ScanSAR 영상화에 대한 새로운 아이디어를 소개한다. 버스트(Burst) 모드로 신호를 획득하는 ScanSAR의 전통적인 영상화는 버스트 간 영상을 연결하는 Azimuth stitching이 필요하여, 이 과정은 방사왜곡 및 위상왜곡을 유발한다. 전통적인 SPECAN 방법 대신 이 논문에서는 시간영역 교차상관을 이용하여 Azimuth stitching 과정 없이 영상화가 가능한 새로운 방법을 소개한다. 이 방법의 핵심 아이디어는 기준함수 밴드폭을 적절히 확장하여 시간영역 교차상관을 수행하면 Azimuth stitching 없이도 영상화가 가능하다는 점이다. 이 방법을 실제 위성 원시신호에 적용하여 영상 전 구간에서 영상품질과 방사왜곡 관점에서 우수한 성능을 검증하였다. 버스트 모드를 기반으로 하는 ScanSAR는 영상품질(3 dB 해상도, peak-to-sidelobe ratio (PSLR), 압축률, Speckle 잡음 등)은 모든 품질지표에서 도플러 주파수 전 영역 신호를 이용하는 Stripmap에 비해 낮을 수밖에 없다. 그러나, 각 활용분야 및 기술에 따라 선정된 특정 영상 품질지표 만을 개선할 수 있는 방법은 다양하다. 따라서 ScanSAR 영상화는 모든 활용분야에 획일적인 방법에 의한 영상화보다는, 각 활용에 따라 요구되는 품질지표 우선순위에 따라 최적화할 수 있는 영상화 방법을 적용하는 차별화 전략이 요구된다.


This paper presents an idea of ScanSAR image formation. For image formation of ScanSAR that utilizes the burst mode for raw signal acquisition, most conventional single burst methods essentially require a step of azimuth stitching which contributes to radiometric and phase distortions to some extent. Time-domain cross correlation could replace SPECAN which is most popularly used for ScanSAR processing. The core idea of the proposed method is that it is possible to relieve the necessity of azimuth stitching by an extension of Doppler bandwidth of the reference function to the burst cycle period. Performance of the proposed method was evaluated by applying it to the raw signals acquired by a spaceborne SAR system, and results satisfied all image quality requirements including 3 dB width, peak-to-sidelobe ratio (PSLR), compression ratio, speckle noise, etc. Image quality of ScanSAR is inferior to that of Stripmap in all aspects. However, it is also possible to improve the quality of ScanSAR image competitive to that of Stripmap if focused on a certain parameter while reduced qualities of other parameters. Thus, it is necessary for a ScanSAR processor to offer a great degree of flexibility complying with different requirements for different applications and techniques.

KCI등재

4LSTM을 이용한 한반도 근해 이상수온 예측모델

저자 : 최혜민 ( Hey Min Choi ) , 김민규 ( Min-kyu Kim ) , 양현 ( Hyun Yang )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 265-282 (18 pages)

다운로드

(기관인증 필요)

초록보기

해수면 온도(Sea surface temperature, SST)는 지구시스템에서 해양의 순환과 생태계에 큰 영향을 주는 요소이다. 지구온난화로 한반도 근해 해수면 온도에 변화가 생기면서 이상 수온(고수온, 저수온) 현상이 발생하여 해양생태계와 수산업 피해를 지속적으로 발생시키고 있다. 따라서 본 연구는 한반도 근해 해수면 온도를 예측하여 이상 수온 현상 예측으로 피해를 예방하는 방법론을 제안한다. 연구 지역은 한반도 근해로 설정하여 동시간대 해수면 온도 데이터를 사용하기 위해 Europe Centre for Medium-Range Weather Forecasts (ECMWF)의 ERA5 자료를 사용하였다. 연구방법으로는 해수면 온도 데이터의 시계열 특징을 고려하여 딥러닝 모델 중 시계열 데이터 예측에 특화된 Long Short-Term Memory (LSTM) 알고리즘을 이용하였다. 예측 모델은 1~7일 이후 한반도 근해 해수면 온도를 예측하고 고수온(High water temperature, HWT) 혹은 저수온(Low water temperature, LWT) 현상을 예측한다. 해수면 온도 예측 정확도 평가를 위해 결정계수(Coefficient of determination, R2), 평균 제곱근 편차(Root Mean Squared Error, RMSE), 평균 절대 백분율 오차(Mean Absolute Percentage Error, MAPE) 지표를 사용하였다. 예측 모델의 여름철(JAS) 1일 예측 결과는 R2=0.996, RMSE=0.119℃, MAPE=0.352% 이고, 겨울철(JFM) 1일 예측 결과는 R2=0.999, RMSE=0.063℃, MAPE=0.646% 이었다. 예측한 해수면 온도를 이용하여 이상 수온 예측 정확도 평가를 F1 Score로 수행하였다(여름철(2021/08/05) 고수온 예측 결과 F1 Score=0.98, 겨울철(2021/02/19) 저수온 예측 결과 F1 Score=1.0). 예측 기간이 증가하면서 예측 모델이 해수면 온도를 과소 추정하는 경향을 보여주었고, 이로 인해 이상 수온 예측 정확도 또한 낮아졌다. 따라서, 향후 예측 모델의 과소 추정 원인을 분석하고 예측 정확도 향상을 위한 연구가 필요할 것으로 판단된다.


Sea surface temperature (SST) is a factor that greatly influences ocean circulation and ecosystems in the Earth system. As global warming causes changes in the SST near the Korean Peninsula, abnormal water temperature phenomena (high water temperature, low water temperature) occurs, causing continuous damage to the marine ecosystem and the fishery industry. Therefore, this study proposes a methodology to predict the SST near the Korean Peninsula and prevent damage by predicting abnormal water temperature phenomena. The study area was set near the Korean Peninsula, and ERA5 data from the European Center for Medium-Range Weather Forecasts (ECMWF) was used to utilize SST data at the same time period. As a research method, Long Short-Term Memory (LSTM) algorithm specialized for time series data prediction among deep learning models was used in consideration of the time series characteristics of SST data. The prediction model predicts the SST near the Korean Peninsula after 1- to 7-days and predicts the high water temperature or low water temperature phenomenon. To evaluate the accuracy of SST prediction, Coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) indicators were used. The summer (JAS) 1-day prediction result of the prediction model, R2=0.996, RMSE=0.119℃, MAPE=0.352% and the winter (JFM) 1-day prediction result is R2=0.999, RMSE=0.063℃, MAPE=0.646%. Using the predicted SST, the accuracy of abnormal sea surface temperature prediction was evaluated with an F1 Score (F1 Score=0.98 for high water temperature prediction in summer (2021/08/05), F1 Score=1.0 for low water temperature prediction in winter (2021/02/19)). As the prediction period increased, the prediction model showed a tendency to underestimate the SST, which also reduced the accuracy of the abnormal water temperature prediction. Therefore, it is judged that it is necessary to analyze the cause of underestimation of the predictive model in the future and study to improve the prediction accuracy.

KCI등재

5표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석

저자 : 이수미 ( Sumi Lee ) , 이윤경 ( Yun-kyung Lee ) , 김상완 ( Sang-wan Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 283-298 (16 pages)

다운로드

(기관인증 필요)

초록보기

Synthetic Aperture Radar (SAR)영상은 날씨와 주야에 관계없이 취득될 수 있어 감시, 정찰 및 국토안보 등의 목적을 위한 자동표적인식(Automatic Target Recognition, ATR)에 활용 가능성이 높다. 그러나, 식별 시스템 개발을 위해 다양하고 방대한 양의 시험영상을 구축하는 것은 비용, 운용측면에서 한계가 있다. 최근 표적 모델을 이용하여 시뮬레이션된 SAR 영상에 기반한 표적 식별 시스템 개발에 대한 관심이 높아지고 있다. SARATR 분야에서 대표적으로 이용되는 산란점 매칭과 템플릿 매칭 기반 알고리즘을 적용하여 표적식별을 수행하였다. 먼저 산란점 매칭 기반의 식별은 점을 World View Vector (WVV)로 재구성 후 Weighted Bipartite Graph Matching (WBGM)을 수행하였고, 템플릿 매칭을 통한 식별은 서로 인접한 산란점으로 재구성한 두 영상간의 상관계수를 사용하였다. 개발한 두 알고리즘의 식별성능시험을 위해 최근 미국 Defense Advanced Research Projects Agency (DARPA)에서 배포한 표적 시뮬레이션 영상인 Synthetic and Measured Paired Labeled Experiment (SAMPLE) 자료를 사용하였다. 표준 환경, 표적의 부분 폐색, 랜덤 폐색 정도에 따른 알고리즘 성능을 분석하였다. 산란점 매칭 알고리즘의 식별 성능이 템플릿 매칭보다 전반적으로 우수하였다. 10개 표적을 대상으로 표준 환경에서의 산란점 매칭기반 평균 식별률은 85.1%, 템플릿 매칭기반은 74.4%이며, 표적별 식별성능 편차 또한 산란점 매칭기법이 템플릿 매칭기법보다 작았다. 표적의 부분 폐색정도에 따른 성능은 산란점 매칭기반 알고리즘이 템플릿 매칭보다 약 10% 높고, 표적의 랜덤 폐색 60% 발생에도 식별률이 73.4% 정도로 비교적 높은 식별성능을 보였다.


As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.

KCI등재

6해양관측부위 자료 기반 딥러닝 기술을 활용한 해양 혼합층 수온 예측

저자 : 고관섭 ( Kwan-seob Ko ) , 변성현 ( Seong-hyeon Byeon ) , 김영원 ( Young-won Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 299-309 (11 pages)

다운로드

(기관인증 필요)

초록보기

최근 한반도 주역 해역의 수온이 꾸준히 증가하고 있다. 수온변화는 어업생태계에 영향을 미칠 뿐만 아니라 해양에서의 군사작전과도 밀접히 연관되어 있다. 본 연구는 딥러닝 기술을 기반으로 하는 다양한 예측모델을 통해 단기간 수온예측을 시도함으로써 어떠한 모델이 수온예측분야에 더욱 적합한지를 제시하는 것에 목적을 두었다. 예측을 위해 사용한 데이터는 국립수산과학원에서 해양 관측부이를 통해 관측한 2016년부터 2020년까지 동해 지역(고성, 양양, 강릉, 영덕)의 수온 데이터이다. 또한 예측을 위한 모델로는 시계열 데이터 예측에 우수한 성능을 보이는 Long Short-Term Memory (LSTM), Bidirectional LSTM 그리고 Gated Recurrent Unit (GRU) 기법을 사용하였다. 기존 연구가 LSTM만을 활용하였던데 반해 이번 연구에서는 LSTM 외에 다양한 기법을 적용함으로써 각 기법의 예측 정확도와 수행시간을 비교하였다. 연구결과, 1시간 예측을 기준으로 모든 관측지점에서 Bidirectional LSTM과 GRU 기법이 실제값과 예측값의 오차가 가장 적은 것으로 확인되었으며, 학습시간에 있어서는 GRU가 가장 빠른 것으로 확인되었다. 이를 통해, 예측 오차를 줄이면서 정확도를 향상하기 위한 수온예측에는 Bidirectional LSTM을 활용하고 대잠작전처럼 정확도 외에 실시간 예측이 필요한 분야에 있어서는 GRU 기법을 활용하는 방안이 더욱 적절할 것으로 판단된다.


Recently, The sea water temperature around Korean Peninsula is steadily increasing. Water temperature changes not only affect the fishing ecosystem, but also are closely related to military operations in the sea. The purpose of this study is to suggest which model is more suitable for the field of water temperature prediction by attempting short-term water temperature prediction through various prediction models based on deep learning technology. The data used for prediction are water temperature data from the East Sea (Goseong, Yangyang, Gangneung, and Yeongdeok) from 2016 to 2020, which were observed through marine observation by the National Fisheries Research Institute. In addition, we use Long Short-Term Memory (LSTM), Bidirectional LSTM, and Gated Recurrent Unit (GRU) techniques that show excellent performance in predicting time series data as models for prediction. While the previous study used only LSTM, in this study, the prediction accuracy of each technique and the performance time were compared by applying various techniques in addition to LSTM. As a result of the study, it was confirmed that Bidirectional LSTM and GRU techniques had the least error between actual and predicted values at all observation points based on 1 hour prediction, and GRU was the fastest in learning time. Through this, it was confirmed that a method using Bidirectional LSTM wasrequired for water temperature prediction to improve accuracy while reducing prediction errors. In areas that require real-time prediction in addition to accuracy, such as anti-submarine operations, it is judged that the method of using the GRU technique will be more appropriate.

KCI등재

7농림위성 산림분야 식생지수 검보정 사이트 설계

저자 : 임중빈 ( Joongbin Lim ) , 차성은 ( Sungeun Cha ) , 원명수 ( Myoungsoo Won ) , 김준 ( Joon Kim ) , 박주한 ( Juhan Park ) , 류영렬 ( Youngryel Ryu ) , 이우균 ( Woo-kyun Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 311-326 (16 pages)

다운로드

(기관인증 필요)

초록보기

우리나라 산림의 효율적인 관리와 산림 모니터링을 위해 산림청은 농림위성을 개발 중이며 2025년 발사 예정이다. 농림위성을 효율적으로 활용하기 위해 산림청 국립산림과학원은 36종의 농림위성 산림분야 활용산출물 개발을 진행 중이다. 원격탐사 기법을 활용하여 도출된 산출물들은 지상검증이 요구되며 해당 산출물들에 대한 품질 모니터링 결과를 지속적으로 보고해야 한다. 국내 최초로 산림분야 활용 위성이 개발되는 상황이라 국내에는 공식적인 산림분야 활용 산출물 검보정 사이트가 부재하다. 이에 저자들은 국제기준에 맞춰 농림위성 산림분야 활용산출물 검보정을 위한 검보정 사이트를 설계하였다. 또한 전국적으로 검보정 사이트를 설치하기 위해 적정 센서를 선택하여 해당 센서의 활용 가능성을 평가하였다. 평가 결과 지상 관측데이터와 Sentinel-2 영상과의 산림 산출물에 대한 오차가 ±5% 이내로 관측되어 해당 센서를 활용하여 전국적으로 확장이 가능함을 확인하였다.


The Compact Advanced Satellite 500-4 (CAS500-4) is under development to efficiently manage and monitor forests in Korea and is scheduled to launch in 2025. The National Institute of Forest Science is developing 36 types of forestry applications to utilize the CAS500-4 efficiently. The products derived using the remote sensing method require validation with ground reference data, and the quality monitoring results for the products must be continuously reported. Due to it being the first time developing the national forestry satellite, there is no official calibration and validation site for forestry products in Korea. Accordingly, the author designed a calibration and validation site for the forestry products following international standards. In addition, to install calibration and validation sites nationwide, the authors selected appropriate sensors and evaluated the applicability of the sensors. As a result, the difference between the ground observation data and the Sentinel-2 image was observed to be within ±5%, confirming that the sensor could be used for nationwide expansion.

1
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1Flow Velocity Change of David Glacier, East Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking Method

저자 : Jihyun Moon , Yuri Cho , Hoonyol Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 1-11 (11 pages)

다운로드

(기관인증 필요)

초록보기

This study measures the change of ice flow velocity of David Glacier, one of the fast-moving glaciers in East Antarctica that drains through Drygalski Ice Tongue. In order to effectively observe the rapid flow velocity, we applied the offset tracking technique to Sentinel-1A SAR images obtained from 2016 to 2020 with 36-day temporal baseline. The resulting velocity maps were averaged and the two relatively fast points (A1 and A2) were selected for further time-series analysis. The flow velocity increased during the Antarctic summer (around December to March) over the four years' observation period probably due to the ice surface melting and reduced friction on the ice bottom. Bedmap2 showed that the fast flow velocities at A1 and A2 are associated with a sharp decrease in the ice surface and bottom elevation so that ice volumetric cross-section narrows down and the crevasses are being created on the ice surface. The local maxima in standard deviation of ice velocity, S1 and S2, showed random temporal fluctuation due to the rotational ice swirls causing error in offset tracking method. It is suggested that more robust offset tracking method is necessary to incorporate rotational motion.

KCI등재

2Damage Proxy Map (DPM) of the 2016 Gyeongju and 2017 Pohang Earthquakes Using Sentinel-1 Imagery

저자 : Arip Syaripudin Nur , Chang-wook Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 13-22 (10 pages)

다운로드

(기관인증 필요)

초록보기

The ML 5.8 earthquake shocked Gyeongju, Korea, at 11:32:55 UTC on September 12, 2016. One year later, on the afternoon of November 15, 2017, the ML 5.4 earthquake occurred in Pohang, South Korea. The earthquakes injured many residents, damaged buildings, and affected the economy of Gyeongju and Pohang. The damage proxy maps (DPMs) were generated from Sentinel-1 synthetic aperture radar (SAR) imagery by comparing pre- and co-events interferometric coherences to identify anomalous changes that indicate damaged by the earthquakes. DPMs manage to detect coherence loss in residential and commercial areas in both Gyeongju and Pohang earthquakes. We found that our results show a good correlation with the Korea Meteorological Administration (KMA) report with Modified Mercalli Intensity (MMI) scale values of more than VII (seven). The color scale of Sentinel-1 DPMs indicates an increasingly significant change in the area covered by the pixel, delineating collapsed walls and roofs from the official report. The resulting maps can be used to assess the distribution of seismic damage after the Gyeongju and Pohang earthquakes and can also be used as inventory data of damaged buildings to map seismic vulnerability using machine learning in Gyeongju or Pohang.

KCI등재

3Design of LEO Constellations with Inter-satellite Connects Based on the Performance Evaluation of the Three Constellations SpaceX, OneWeb and Telesat

저자 : Peng Zong , Saeid Kohani

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 23-40 (18 pages)

다운로드

(기관인증 필요)

초록보기

The idea of designing LEO's satellite constellations has become very important for internet access. Several LEO satellite constellations have been designed and used for global communications. In this paper, by examining three LEO satellite constellations, namely SpaceX's 4425 satellites Ku-Kaband system, OneWeb's 720 satellites Ku-Ka-band system, Telesat's 117 satellites Ka-band system. And evaluating the power of data transmission and their telecommunications, we come close to a conceptual design area. First with the mathematical modeling and formulation and the design of inter-orbital communications for satellites, intersatellite communications, inter-orbital communications, we get a complete design based on the genetic algorithm for LEO satellite constellation design. And then, using simulations and design software, the final results of the designed model are obtained. Finally, we compare the results of the designed model with other existing LEO satellite constellations.

KCI등재

4Improvement of Thunderstorm Detection Method Using GK2A/AMI, RADAR, Lightning, and Numerical Model Data

저자 : Ha-yeong Yu , Myoung-seok Suh , Seoung-oh Ryu

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 41-55 (15 pages)

다운로드

(기관인증 필요)

초록보기

To detect thunderstorms occurring in Korea, National Meteorological Satellite Center (NMSC) also introduced the rapid-development thunderstorm (RDT) algorithm developed by EUMETSAT. At NMCS, the H-RDT (HR) based on the Himawari-8 satellite and the K-RDT (KR) which combines the GK2A convection initiation output with the RDT were developed. In this study, we optimized the KR (KU) to improve the detection level of thunderstorms occurring in Korea. For this, we used all available data, such as GK2A/AMI, RADAR, lightning, and numerical model data from the recent two years (2019-2020). The machine learning of logistic regression and stepwise variable selection was used to optimize the KU algorithms. For considering the developing stages and duration time of thunderstorms, and data availability of GK2A/AMI, a total of 72 types of detection algorithms were developed. The level of detection of the KR, HR, and KU was evaluated qualitatively and quantitatively using lightning and RADAR data. Visual inspection using the lightning and RADAR data showed that all three algorithms detect thunderstorms that occurred in Korea well. However, the level of detection differs according to the lightning frequency and day/night, and the higher the frequency of lightning, the higher the detection level is. And the level of detection is generally higher at night than day. The quantitative verification of KU using lightning (RADAR) data showed that POD and FAR are 0.70 (0.34) and 0.57 (0.04), respectively. The verification results showed that the detection level of KU is slightly better than that of KR and HR.

KCI등재

5The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

저자 : Muhammad Fulki Fadhillah , Chang-wook Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 57-67 (11 pages)

다운로드

(기관인증 필요)

초록보기

An earthquake occurred on 17 November 2017 in Pohang, South Korea with a strength of 5.4 Mw. This is the second strongest earthquake recorded by local authorities since the equipment was first installed. In order to improve understanding of earthquakes and surface deformation, many studies have been conducted according to these phenomena. In this research, we will estimate the surface deformation using the Okada model equation. The SAR images of three satellites with different wavelengths (ALOS-2, Cosmo SkyMed and Sentinel-1) were used to produce the interferogram pairs. The interferogram is used as a reference for surface deformation changes by using Okada to determine the source of surface deformation that occurs during an earthquake. The Non-linear optimization (Levemberg-Marquadrt algorithm) and Monte Carlo restart was applied to optimize the fault parameter on modeling process. Based on the modeling results of each satellite data, the fault geometry is ~6 km length, ~2 km width and ~5 km depth. The root mean square error values in the surface deformation model results for Sentinel, CSK and ALOS are 0.37 cm, 0.79 cm and 1.47 cm, respectively. Furthermore, the results of this modeling can be used as learning material in understanding about seismic activity to minimize the impacts that arise in the future.

KCI등재

6Moon Phase based Threshold Determination for VIIRS Boat Detection

저자 : Euihyun Kim , Sang-wan Kim , Hahn Chul Jung , Joo-hyung Ryu

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 69-84 (16 pages)

다운로드

(기관인증 필요)

초록보기

Awareness of boats is a main issue in areas of fishery management, illegal fishing, and maritime traffic, etc. For the awareness, Automatic Identification System (AIS) and Vessel-Pass System (V-PASS) have been widely used to collect the boat-related information. However, only using these systems makes it difficult to collect the accurate information. Recently, satellite-based data has been increasingly used as a cooperative system. In 2015, U.S. National Oceanic and Atmospheric Administration (NOAA) developed a boat detection algorithm using Visible Infrared Imaging Radiometer Suite (VIIRS) Day & Night Band (DNB) data. Although the detections have been widely utilized in many publications, it is difficult to estimate the night-time fishing boats immediately. Particularly, it is difficult to estimate the threshold due to the lunar irradiation effect. This effect must be corrected to apply a single specific threshold. In this study, the moon phase was considered as the main frequency of this effect. Considering the moon phase, relational expressions are derived and then used as offsets for relative correction. After the correction, it shows a significant reduction in the standard deviation of the threshold compared to the threshold of NOAA. Through the correction, this study can set a constant threshold every day without determination of different thresholds. In conclusion, this study can achieve the detection applying the single specific threshold regardless of the moon phase.

KCI등재

7Study on Dimensionality Reduction for Sea-level Variations by Using Altimetry Data around the East Asia Coasts

저자 : Do-hyun Hwang , Suho Bak , Min-ji Jeong , Na-kyeong Kim , Mi-so Park , Bo-ram Kim , Hong-joo Yoon

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 85-95 (11 pages)

다운로드

(기관인증 필요)

초록보기

Recently, as data mining and artificial neural network techniques are developed, analyzing large amounts of data is proposed to reduce the dimension of the data. In general, empirical orthogonal function (EOF) used to reduce the dimension in the ocean data and recently, Self-organizing maps (SOM) algorithm have been investigated to apply to the ocean field. In this study, both algorithms used the monthly Sea level anomaly (SLA) data from 1993 to 2018 around the East Asia Coasts. There was dominated by the influence of the Kuroshio Extension and eddy kinetic energy. It was able to find the maximum amount of variance of EOF modes. SOM algorithm summarized the characteristic of spatial distributions and periods in EOF mode 1 and 2. It was useful to find the change of SLA variable through the movement of nodes. Node 1 and 5 appeared in the early 2000s and the early 2010s when the sea level was high. On the other hand, node 2 and 6 appeared in the late 1990s and the late 2000s, when the sea level was relatively low. Therefore, it is considered that the application of the SOM algorithm around the East Asia Coasts is well distinguished. In addition, SOM results processed by SLA data, it is able to apply the other climate data to explain more clearly SLA variation mechanisms.

KCI등재

8Retrieval of High-Resolution Grid Type Visibility Data in South Korea Using Inverse Distance Weighting and Kriging

저자 : Taeho Kang , Myoung-seok Suh

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 97-110 (14 pages)

다운로드

(기관인증 필요)

초록보기

Fog can cause large-scale human and economic damages, including traffic systems and agriculture. So, Korea Meteorological Administration is operating about 290 visibility meters to improve the observation level of fog. However, it is still insufficient to detect very localized fog. In this study, high-resolution grid-type visibility data were retrieved from irregularly distributed visibility data across the country. To this end, three objective analysis techniques (Inverse Distance Weighting (IDW), Ordinary Kriging (OK) and Universal Kriging (UK)) were used. To find the best method and parameters, sensitivity test was performed for the effective radius, power parameter and variogram model that affect the level of objective analysis. Also, the effect of data distribution characteristics (level of normality) on the performance level of objective analysis was evaluated. IDW showed a relatively high level of objective analysis in terms of bias, RMSE and correlation, and the performance is inversely proportional to the effective radius and power parameter. However, the two Krigings showed relatively low level of objective analysis, in particular, greatly weakened the variability of the variables, although the level of output was different depending on the variogram model used. As the level of objective analysis is greatly influenced by the distribution characteristics of data, power, and models used, care should be taken when selecting objective analysis techniques and parameters.

KCI등재

9Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

저자 : Doyoung Jeong , Yongil Kim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 111-122 (12 pages)

다운로드

(기관인증 필요)

초록보기

Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

KCI등재

10The Assessment of Cross Calibration/Validation Accuracy for KOMPSAT-3 Using Landsat 8 and 6S

저자 : Cheonggil Jin , Chuluong Choi

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 1호 발행 연도 : 2021 페이지 : pp. 123-137 (15 pages)

다운로드

(기관인증 필요)

초록보기

In this study, we performed cross calibration of KOMPSAT-3 AEISS imaging sensor with reference to normalized pixels in the Landsat 8 OLI scenes of homogenous ROI recorded by both sensors between January 2014 and December 2019 at the Libya 4 PICS. Cross calibration is using images from a stable and well-calibrated satellite sensor as references to harmonize measurements from other sensors and/or characterize other sensors. But cross calibration has two problems; RSR and temporal difference. The RSR of KOMPSAT-3 and Landsat 8 are similar at the blue and green bands. But the red and NIR bands have a large difference. So we calculate SBAF of each sensor. We compared the SBAF estimated from the TOA Radiance simulation with KOMPSAT-3 and Landsat 8, the results displayed a difference of about 2.07~2.92% and 0.96~1.21% in the VIS and NIR bands. Before SBAF, Reflectance and Radiance difference was 0.42~23.23%. Case of difference temporal, we simulated by 6S and Landsat 8 for alignment the same acquisition time. The SBAF-corrected cross calibration coefficients using KOMPSAT-3, 6S and simulated Landsat 8 compared to the initial cross calibration without correction demonstrated a percentage difference in the spectral bands of about 0.866~1.192%. KOMPSAT-3 maximum uncertainty was estimated at 3.26~3.89%; errors due to atmospheric condition minimized to less than 1% (via 6S); Maximum deviation of KOMPSAT-3 DN was less than 1%. As the result, the results affirm that SBAF and 6s simulation enhanced cross-calibration accuracy.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기