논문 상세보기

한국정보처리학회> 정보처리학회논문지. 컴퓨터 및 통신시스템> 비콘과 홍채인식, 블록체인 기반의 의료진 신분확인 시스템 제안

KCI등재

비콘과 홍채인식, 블록체인 기반의 의료진 신분확인 시스템 제안

A Medical Staff Identification System by Using of Beacon, Iris Recognition and Blockchain

임세진 ( Lim Se Jin ) , 권혁동 ( Kwon Hyeok Dong ) , 서화정 ( Seo Hwa Jeong )
  • : 한국정보처리학회
  • : 정보처리학회논문지. 컴퓨터 및 통신시스템 10권1호
  • : 연속간행물
  • : 2021년 01월
  • : 1-6(6pages)
정보처리학회논문지. 컴퓨터 및 통신시스템

DOI


목차

1. 서 론
2. 관련 연구
3. 시스템 구조
4. 기대효과
5. 결 론
References

키워드 보기


초록 보기

최근 대리수술(무면허의료행위)과 같이 환자의 안전을 위협하는 사건들이 언론에 보도되고 있다. 대리수술 방지를 위한 수술실 감시카메라 장치도입 등의 대안이 등장하고 있지만, 의료계의 거센 반발로 인해 시행되기에는 현실적인 어려움이 있다. 하지만 대리 수술과 같은 사건이 빈번히 발생함에 따라 의사에 대한 사회적 신뢰도가 추락하고 있다. 본 논문에서는 근거리 무선 통신 장치인 비콘(Beacon)과 생체인식 중 안전하고 신뢰할 수 있는 홍채인식을 결합한 의료진 신분 확인 시스템을 제안한다. 이 시스템은 블록체인 상에서 동작하도록 하여 신뢰성을 더한다. 이 시스템은 홍채인식을 통해 사용자 인증을 수행함으로써 1차적인 신분확인을 하고 비콘을 통해 의료진이 수술실에 있다는 것을 증명한다. 또한 백그라운드로 비콘 신호를 수신하고, 무작위 주기로 홍채인증을 수행하여 의료진이 초기 인증만 수행하고 수술실을 떠나는 경우를 방지함으로써 집도의에 대한 환자의 신뢰를 보장한다.
Recently, incidents such as proxy surgery (unlicensed medical practice) have been reported in the media that threaten the safety of patients. Alternatives such as the introduction of operating room surveillance camera devices to prevent proxy surgery are emerging, but there are practical difficulties in implementing them due to strong opposition from the medical community. However, the social credibility of doctors is falling as incidents such as proxy surgery occur frequently. In this paper, we propose a medical staff identification system combining Beacon and iris recognition. The system adds reliability by operating on the blockchain network. The system performs primary identification by performing user authentication through iris recognition and proves that the medical staff is in the operating room through beacons. It also ensures patient trust in the surgeon by receiving beacon signals in the background and performing iris authentication at random intervals to prevent medical staff from leaving the operating room after only performing initial certification.

UCI(KEPA)

간행물정보

  • : 공학분야  > 전자공학
  • : KCI등재
  • :
  • : 월간
  • : 2287-5891
  • : 2734-049X
  • : 학술지
  • : 연속간행물
  • : 2012-2021
  • : 473


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

10권10호(2021년 10월) 수록논문
최근 권호 논문
| | | |

KCI등재

1M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과

저자 : 정대용 ( Jung Dae Yong ) , 서동우 ( Seo Dong Woo ) , 황재순 ( Hwang Jae Soon ) , 박성욱 ( Park Sung Uk ) , 김명일 ( Kim Myung Il )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 컴퓨터 및 통신시스템 10권 10호 발행 연도 : 2021 페이지 : pp. 261-268 (8 pages)

다운로드

(기관인증 필요)

초록보기

클라우드 컴퓨팅은 서비스 사용자 요구에 따라 컴퓨팅 자원을 임대하여 사용하는 컴퓨팅 패러다임이다. 클라우드 컴퓨팅에서 컴퓨팅 자원은 사용자의 서비스 수요에 따라 컴퓨팅 자원을 확장 또는 축소가 가능하여 전체 서비스 비용 절감 효과를 가질 수 있다. 그리고, M&S (Modeling and Simulation) 기술은 컴퓨팅 자원과 CAE 소프트웨어를 통해 엔지니어링 분석 작업 결과를 얻어, 실제 실험 결과가 없이 제품의 상태를 시뮬레이션을 수행하여 분석하는 방법이다. M&S 기술은 FEA(Finite Element Analysis), CFD(Computational Fluid Dynamics), MBD(Multibody Dynamics) 및 최적화 분야에서 활용된다. M&S 통한 작업 절차는 전처리, 해석, 후처리 단계로 구분된다. CAE 소트프웨어를 통한 3D 모델링 작업인 전/후처리는 GPU 연산이 집약적이며, 3D 모델 해석은 CPU 또는 GPU 연산이 요구된다. 일반적인 개인 데스크톱에서 복잡한 3D 모델을 해석하는 시간이 많이 소요된다. 결과적으로, M&S를 원활하게 수행하기 위해서는 고성능 컴퓨팅 자원이 요구된다. 이 문제를 해결하기 위해 우리는 통합 클라우드 및 클러스터 컴퓨팅 환경인 HEMOS-Cloud 서비스를 제안한다. 제안한 클라우드 기반 방식에서는 M&S에 필요한 전/후처리 및 솔버 작업을 원활하게 수행할 수 있도록 구성했다. 이 시스템에서 전/후처리는 VDI(Virtual Desktop Infrastructure)에서 수행되고 해석은 클러스터 환경에서 수행된다. 각 용도에 맞게 서로 다른 환경에서 분리하여 컴퓨팅 자원 간에 간섭을 최소화했다. HEMOS-Cloud 서비스는 기업 또는 학교에서 M&S의 경험이 필요로 하는 사용자에게 CAE 소프트웨어와 컴퓨팅 자원을 제공한다. 본 논문에서는 HEMOS-Cloud 서비스의 경제적 파급효과를 산업연관분석을 활용하여 분석했다. 전문가의 의견을 반영하여 조정된 계수를 통한 분석 결과는 생산유발효과 74억원, 부가가 치유발효과 41억원, 취업자유발효과 10억원당 50명으로 분석되었다.


Cloud computing is a computing paradigm in which users can utilize computing resources in a pay-as-you-go manner. In a cloud system, resources can be dynamically scaled up and down to the user's on-demand so that the total cost of ownership can be reduced. The Modeling and Simulation (M&S) technology is a renowned simulation-based method to obtain engineering analysis and results through CAE software without actual experimental action. In general, M&S technology is utilized in Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody dynamics (MBD), and optimization fields. The work procedure through M&S is divided into pre-processing, analysis, and post-processing steps. The pre/post-processing are GPU-intensive job that consists of 3D modeling jobs via CAE software, whereas analysis is CPU or GPU intensive. Because a general-purpose desktop needs plenty of time to analyze complicated 3D models, CAE software requires a high-end CPU and GPU-based workstation that can work fluently. In other words, for executing M&S, it is absolutely required to utilize high-performance computing resources. To mitigate the cost issue from equipping such tremendous computing resources, we propose HEMOS-Cloud service, an integrated cloud and cluster computing environment. The HEMOS-Cloud service provides CAE software and computing resources to users who want to experience M&S in business sectors or academics. In this paper, the economic ripple effect of HEMOS-Cloud service was analyzed by using industry-related analysis. The estimated results of using the experts-guided coefficients are the production inducement effect of KRW 7.4 billion, the value-added effect of KRW 4.1 billion, and the employment-inducing effect of 50 persons per KRW 1 billion.

KCI등재

2애드혹 센서 네트워크 수명 연장을 위한 Q-러닝 기반 에너지 균등 소비 라우팅 프로토콜 기법

저자 : 김기상 ( Kim Ki Sang ) , 김승욱 ( Kim Sung Wook )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 컴퓨터 및 통신시스템 10권 10호 발행 연도 : 2021 페이지 : pp. 269-276 (8 pages)

다운로드

(기관인증 필요)

초록보기

최근 스마트 센서는 다양한 환경에서 사용되고 있으며, 애드혹 센서 네트워크 (ASN) 구현에 대한 연구가 활발하게 진행되고 있다. 그러나 기존 센서 네트워크 라우팅 알고리즘은 특정 제어 문제에 초점을 맞추며 ASN 작업에 직접 적용할 수 없는 문제점이 있다. 본 논문에서는 Q-learning 기술을 이용한 새로운 라우팅 프로토콜을 제안하는데, 제안된 접근 방식의 주요 과제는 균형 잡힌 시스템 성능을 확보하면서 효율적인 에너지 할당을 통해 ASN의 수명을 연장하는 것이다. 제안된 방법의 특징은 다양한 환경적 요인을 고려하여 Q-learning 효과를 높이며, 특히 각 노드는 인접 노드의 Q 값을 자체 Q 테이블에 저장하여 데이터 전송이 실행될 때마다 Q 값이 업데이트되고 누적되어 최적의 라우팅 경로를 선택하는 것이다. 시뮬레이션 결과 제안된 방법이 에너지 효율적인 라우팅 경로를 선택할 수 있으며 기존 ASN 라우팅 프로토콜에 비해 우수한 네트워크 성능을 얻을 수 있음을 확인하였다.


Recently, smart sensors are used in various environments, and the implementation of ad-hoc sensor networks (ASNs) is a hot research topic. Unfortunately, traditional sensor network routing algorithms focus on specific control issues, and they can't be directly applied to the ASN operation. In this paper, we propose a new routing protocol by using the Q-learning technology, Main challenge of proposed approach is to extend the life of ASNs through efficient energy allocation while obtaining the balanced system performance. The proposed method enhances the Q-learning effect by considering various environmental factors. When a transmission fails, node penalty is accumulated to increase the successful communication probability. Especially, each node stores the Q value of the adjacent node in its own Q table. Every time a data transfer is executed, the Q values are updated and accumulated to learn to select the optimal routing route. Simulation results confirm that the proposed method can choose an energy-efficient routing path, and gets an excellent network performance compared with the existing ASN routing protocols.

KCI등재

3IoT 환경에서 센서 데이터 처리율 향상을 위한 Apriori 기반 빅데이터 처리 시스템

저자 : 송진수 ( Song Jin Su ) , 김수진 ( Kim Soo Jin ) , 신용태 ( Young Tae Shin )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 컴퓨터 및 통신시스템 10권 10호 발행 연도 : 2021 페이지 : pp. 277-284 (8 pages)

다운로드

(기관인증 필요)

초록보기

최근 스마트 홈 환경은 무선 정보통신 기술과 융합을 통해서 다양한 데이터를 수집·통합·활용하는 플랫폼이 될 것으로 전망되고 있으며 실제로 스마트 홈 내부에는 다양한 센서를 탑재한 스마트 디바이스 수가 점점 증가하고 있다. 증가된 스마트 디바이스 수만큼 처리해야하는 데이터의 양도 증가하고 있으며 이를 효과적으로 처리하기 위해 빅데이터 처리 시스템이 활발하게 도입되고 있다. 그러나 기존 빅데이터 처리 시스템은 분산 노드에 할당되기 전 모든 요청이 클러스터 드라이버로 향하기 때문에 동시에 많은 요청이 발생하는 경우 분할 작업을 관리하는 클러스터 드라이버에 병목현상이 발생하고, 이는 네트워크를 공유하는 클러스터 전체의 성능감소로 이어진다. 특히 작은 데이터 처리를 지속해서 요청하는 스마트 홈 디바이스에서 지연율이 더 크게 나타난다. 이에 본 논문에서는 동시에 다수의 센서에서 요청이 발생하는 스마트 홈 환경에서 효과적인 데이터 처리를 위한 Apriori 기반 빅데이터 시스템을 설계하였다. 제안하는 시스템의 성능평가 결과에 따르면, 데이터 처리 시간은 기존 시스템에 비해 최소 19.2%에서 최대 38.6% 단축됐다. 이러한 결과가 발생한 이유는 측정되는 데이터의 형태와 관련이 있다. 스마트 홈 환경은 수집되는 데이터의 양은 방대하나 각 데이터의 용량은 작기 때문에 캐시 서버의 사용이 데이터 처리에 큰 역할을 하며, Apriori 알고리즘을 통한 연관도 분석으로 사용자의 행동 습관과 연관도가 높은 센서 데이터를 캐시에 저장하기 때문에 캐시 서버의 활용률이 매우 높다.


Recently, the smart home environment is expected to be a platform that collects, integrates, and utilizes various data through convergence with wireless information and communication technology. In fact, the number of smart devices with various sensors is increasing inside smart homes. The amount of data that needs to be processed by the increased number of smart devices is also increasing, and big data processing systems are actively being introduced to handle it effectively. However, traditional big data processing systems have all requests directed to cluster drivers before they are allocated to distributed nodes, leading to reduced cluster-wide performance sharing as cluster drivers managing segmentation tasks become bottlenecks. In particular, there is a greater delay rate on smart home devices that constantly request small data processing. Thus, in this paper, we design a Apriori-based big data system for effective data processing in smart home environments where frequent requests occur at the same time. According to the performance evaluation results of the proposed system, the data processing time was reduced by up to 38.6% from at least 19.2% compared to the existing system. The reason for this result is related to the type of data being measured. Because the amount of data collected in a smart home environment is large, the use of cache servers plays a major role in data processing, and association analysis with Apriori algorithms stores highly relevant sensor data in the cache.

KCI등재

4머신러닝기반 간 경화증 진단을 위한 웹 서비스 개발

저자 : 노시형 ( Noh Si-Hyeong ) , 김지언 ( Kim Ji-eon ) , 이충섭 ( Lee Chungsub ) , 김태훈 ( Kim Tae-hoon ) , 김경원 ( Kim KyungWon ) , 윤권하 ( Yoon Kwon-ha ) , 정창원 ( Jeong Chang-won )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 컴퓨터 및 통신시스템 10권 10호 발행 연도 : 2021 페이지 : pp. 285-290 (6 pages)

다운로드

(기관인증 필요)

초록보기

의료분야에서 인공지능 기술을 도입한 질환 진단 및 예측 연구들이 활발하게 진행되고 있다. 의료영상기반의 인공지능 기술 적용에 가장 많이 활용되고 있는 질환 진단 및 예측에 대한 다양한 제품으로 출시되고 있다. 인공지능은 질병에 대한 진단, 양성과 악성으로 구분되는 질환의 구분, 질병의 위험도에 따른 구별이나 판독에 이용하기 위해 질환부위를 분리하는 등에 적용되고 있다. 최근에는 클라우드기술과 연계하여 서비스 제품으로 활용성이 높아지고 있다. 본 논문에서 다루는 질환 중에 간 질환은 통증이 적어 조기진단이 어려워 그 위험도가 매우 높은 질환이다. 이러한 질환 진단에 비침습적인 진단방법으로 의료영상기반으로 인공지능 기술을 도입하였다. 우리는 임상에서 가장 의미 있는 간 경화증 환자의 판독을 돕기 위한 웹 서비스 개발 내용을 기술한다. 그리고 웹서비스 프로세스를 보이고 각 프로세스의 구동 화면과 최종 결과화면을 보인다. 제안한 서비스를 통해 간 경화증을 조기에 진단하고, 빠른 치료를 통해 환자의 회복에 도움을 줄 수 있을 것으로 기대한다.


In the medical field, disease diagnosis and prediction research using artificial intelligence technology is being actively conducted. It is being released as a variety of products for disease diagnosis and prediction, which are most widely used in the application of artificial intelligence technology based on medical images. Artificial intelligence is being applied to diagnose diseases, to classify diseases into benign and malignant, and to separate disease regions for use in identification or reading according to the risk of disease. Recently, in connection with cloud technology, its utility as a service product is increasing. Among the diseases dealt with in this paper, liver disease is a disease with very high risk because it is difficult to diagnose early due to the lack of pain. Artificial intelligence technology was introduced based on medical images as a non-invasive diagnostic method for diagnosing these diseases. We describe the development of a web service to help the most meaningful clinical reading of liver cirrhosis patients. Then, it shows the web service process and shows the operation screen of each process and the final result screen. It is expected that the proposed service will be able to diagnose liver cirrhosis at an early stage and help patients recover through rapid treatment.

1
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1비콘과 홍채인식, 블록체인 기반의 의료진 신분확인 시스템 제안

저자 : 임세진 ( Lim Se Jin ) , 권혁동 ( Kwon Hyeok Dong ) , 서화정 ( Seo Hwa Jeong )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 컴퓨터 및 통신시스템 10권 1호 발행 연도 : 2021 페이지 : pp. 1-6 (6 pages)

다운로드

(기관인증 필요)

초록보기

최근 대리수술(무면허의료행위)과 같이 환자의 안전을 위협하는 사건들이 언론에 보도되고 있다. 대리수술 방지를 위한 수술실 감시카메라 장치도입 등의 대안이 등장하고 있지만, 의료계의 거센 반발로 인해 시행되기에는 현실적인 어려움이 있다. 하지만 대리 수술과 같은 사건이 빈번히 발생함에 따라 의사에 대한 사회적 신뢰도가 추락하고 있다. 본 논문에서는 근거리 무선 통신 장치인 비콘(Beacon)과 생체인식 중 안전하고 신뢰할 수 있는 홍채인식을 결합한 의료진 신분 확인 시스템을 제안한다. 이 시스템은 블록체인 상에서 동작하도록 하여 신뢰성을 더한다. 이 시스템은 홍채인식을 통해 사용자 인증을 수행함으로써 1차적인 신분확인을 하고 비콘을 통해 의료진이 수술실에 있다는 것을 증명한다. 또한 백그라운드로 비콘 신호를 수신하고, 무작위 주기로 홍채인증을 수행하여 의료진이 초기 인증만 수행하고 수술실을 떠나는 경우를 방지함으로써 집도의에 대한 환자의 신뢰를 보장한다.

KCI등재

2이어핀 삽입 자동화 시스템을 위한 템플릿 매칭 기반 삽입 위치 판별 방법

저자 : 백종환 ( Baek Jonghwan ) , 이재열 ( Lee Jaeyoul ) , 정명수 ( Jung Myungsoo ) , 장민우 ( Jang Minwoo ) , 신동호 ( Shin Dongho ) , 서갑호 ( Seo Kapho ) , 홍성호 ( Hong Sungho )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 컴퓨터 및 통신시스템 10권 1호 발행 연도 : 2021 페이지 : pp. 7-14 (8 pages)

다운로드

(기관인증 필요)

초록보기

장신구 산업은 인건비의 비중이 높고 노동자의 역량에 따라 제품의 제작 작업 시간 및 품질의 편차가 심하다. 이에 산업계의 수요에 맞추어 귀걸이 제품을 위한 실리콘 몰드 표면 지름 0.75mm 홀에 이어핀을 삽입하는 공정을 자동화하기 위하여 삽입 자동화 시스템이 연구되고 있다. 본 논문에서는 다양한 실리콘 몰드에 대한 이어핀 삽입 공정 자동화를 위하여 산업용 카메라를 이용한 이진화 및 템플릿 매칭 기법 기반의 이어핀 삽입 위치 검출 방법을 기술한다. 제안하는 방법은 입력 영상을 이진화와 템플릿 매칭을 이용하여 홀의 위치와 개수를 판단할 수 있다. 성능 시험을 통하여, 적용한 방법은 98.5%의 정확도와 Otsu 방법에 비해 0.5초 빠른 처리속도를 가지는 것을 보였다. 비전 기반 이어핀 삽입 자동화 시스템을 통해 원가 절감 및 작업 시간 절감과 생산성 향상에 기여할 수 있을 것이다.

KCI등재

3정부원격근무서비스(GVPN)의 품질요인이 이용자 만족도에 미치는 영향에 관한 연구: 정부부처 이용자 중심으로

저자 : 이원석 ( Won Suk Lee ) , 장상현 ( Sang-hyun Jang ) , 김영대 ( Yeongdae Kim ) , 신용태 ( Yongtae Shin )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 컴퓨터 및 통신시스템 10권 1호 발행 연도 : 2021 페이지 : pp. 15-28 (14 pages)

다운로드

(기관인증 필요)

초록보기

코로나19 팬데믹으로 사회적 거리 두기가 강화됨에 따라 원격근무가 확산되면서 정부기관에서도 지난 3월부터 재택근무가 시작되어 현재까지도 일정수준을 유지하고 있다. 정부기관에서 재택근무를 위해 필수적으로 사용하고 있는 정부원격근무서비스인 GVPN(Government Virtual Private Network)이 짧은 기간에 급격한 이용자의 증가에 따른 여러 문제점들의 발생이 예상되고 있다. 따라서 이를 직접 이용하고 있는 정부부처의 공무원들을 대상으로 GVPN의 품질요인이 이용자의 만족도에 미치는 영향들을 분석하기 위해 설문조사와 통계분석을 실시하였으며, 이 결과를 기반으로 언택트 시대의 본격적인 확산에 대비하여 원격근무를 위한 GVPN의 개선방안 마련에 필요한 시사점 등을 도출하고자 한다.

1
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기