논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석

KCI등재

DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석

Analysis of Tidal Deflection and Ice Properties of Ross Ice Shelf, Antarctica, by using DDInSAR Imagery

한수정 ( Soojeong Han ) , 한향선 ( Hyangsun Han ) , 이훈열 ( Hoonyol Lee )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 35권6호
  • : 연속간행물
  • : 2019년 12월
  • : 933-944(12pages)
대한원격탐사학회지

DOI


목차

1. 서 론
2. 연구 지역 및 자료
3. 연구방법
4. 연구 결과 및 토의
5. 결 론
사 사
References

키워드 보기


초록 보기

이 연구에서는 영상레이더(synthetic aperture radar; SAR) 이중차분간섭기법(Double-Differential Interferometric SAR; DDInSAR)을 이용하여 남극 로스 빙붕(Ross Ice Shelf)의 동쪽(A지역)과 서쪽(B지역)에 위치한 육지 경계부 지역의 조위변형을 분석하고, 조위예측 모델의 정밀도와 빙붕의 영률(Young’s modulus) 추정을 위해 2015-2016년에 획득된 총7장의 Sentinel-1A SAR 영상을 획득하였다. 먼저, 남극 로스해(Ross Sea)에 대한 대표적인 조위예측 모델인 Ross Sea Height-based Tidal Inverse (Ross_Inv) 모델과 DDInSAR영상에서 추출된 빙붕의 조위변형을 비교한 결과, 모델의 조위예측 오차는 동쪽에서는 3.86 cm로 분석되었으며 조위모델에서 역기압효과가 필수적으로 보정되어야 함을 확인하였다. 그러나 서쪽에서는 역기압효과 보정 후에도 큰 오차가 발생하여 조위모델이 부정확할 수 있음을 확인했다. 또한, 조위변형이 나타나는 힌지 영역(hinge zone)의 폭과 얼음두께의 상관성을 나타내는 1차원 탄성 보 모델에 의거하여 얼음의 영률을 계산하였다. 이를 위해 DDInSAR 영상에서 조위에 의한 변위가 나타나기 시작하는 곳을 지반선(grounding line)으로, 조위에 의한 최대변위가 나타나는 지점을 힌지선(hinge line)으로 새롭게 정의했고, 이 두 선 사이를 힌지 영역으로 정의했다. 반무한 평면체를 가정한 1차원 탄성 보 모델에 의하면 힌지 영역의 폭은 얼음두께의 0.75승에 정비례한다. DDInSAR에서 나타나는 힌지영역 중 지반선과 힌지선이 직선에 가까운 지역에서 힌지 영역의 폭을 측정하였고, 이를 BEDMAP2 얼음 두께의 0.75승과의 선형 회귀 분석을 통해 로스 빙붕 동쪽과 서쪽 힌지 영역의 영률을 1.77±0.73 GPa로 추정할 수 있었다. 이러한 방법으로 향후 Sentinel-1 영상이 축적되면 더 정밀한 영률을 추정할 수 있을 것으로 기대된다.
This study analyzes the tide deformation of land boundary regions on the east (Region A) and west (Region B) sides of the Ross Ice Shelf in Antarctica using Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR). A total of seven Sentinel-1A SAR images acquired in 2015-2016 were used to estimate the accuracy of tide prediction model and Young’s modulus of ice shelf. First, we compared the Ross Sea Height-based Tidal Inverse (Ross_Inv) model, which is a representative tide prediction model for the Antarctic Ross Sea, with the tide deformation of the ice shelf extracted from the DDInSAR image. The accuracy was analyzed as 3.86 cm in the east region of Ross Ice Shelf and it was confirmed that the inverse barometric pressure effect must be corrected in the tide model. However, in the east, it is confirmed that the tide model may be inaccurate because a large error occurs even after correction of the atmospheric effect. In addition, the Young’s modulus of the ice was calculated on the basis of the one-dimensional elastic beam model showing the correlation between the width of the hinge zone where the tide strain occurs and the ice thickness. For this purpose, the grounding line is defined as the line where the displacement caused by the tide appears in the DDInSAR image, and the hinge line is defined as the line to have the local maximum/minimum deformation, and the hinge zone as the area between the two lines. According to the one-dimensional elastic beam model assuming a semi-infinite plane, the width of the hinge region is directly proportional to the 0.75 power of the ice thickness. The width of the hinge zone was measured in the area where the ground line and the hinge line were close to the straight line shown in DDInSAR. The linear regression analysis with the 0.75 power of BEDMAP2 ice thickness estimated the Young’s modulus of 1.77±0.73 GPa in the east and west of the Ross Ice Shelf. In this way, more accurate Young’s modulus can be estimated by accumulating Sentinel-1 images in the future.

UCI(KEPA)

I410-ECN-0102-2021-400-000590365

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2021
  • : 1692


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

37권5호(2021년 10월) 수록논문
최근 권호 논문
| | | |

KCI등재

1기후변화 시나리오를 고려한 위성영상 기반 미래 탄소흡수량 분포 추정

저자 : 나상일 ( Sang-il Na ) , 안호용 ( Ho-yong Ahn ) , 류재현 ( Jae-hyun Ryu ) , 소규호 ( Kyu-ho So ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 833-845 (13 pages)

다운로드

(기관인증 필요)

초록보기

탄소흡수량 산정 및 토지이용 변화에 대한 이해는 기후변화 연구에서 매우 중요하다. 기존의 연구에서는 토지이용 변화에 따른 탄소흡수량 산정에 원격탐사 기술이 사용되고 있으나 대부분 과거의 탄소흡수량 변화에 초점을 맞추고 있다. 따라서 미래 탄소흡수량 변화 예측 연구는 부족한 실정이다. 본 연구에서 CLUE-S 모형을 사용하여 토지이용 변화를 모의하고 기후변화 시나리오를 고려하여 미래 탄소흡수량의 변화를 예측하였다. 그 결과, RCP 4.5 및 8.5 시나리오에서 탄소흡수량은 각각 7.92, 13.02% 감소되는 것으로 예측되었다. 따라서 본 연구에서 제안한 방법은 다른 기후변화 시나리오를 고려한 미래 탄소흡수량 변화에도 적용이 가능할 것으로 기대된다.


Quantification of carbon absorption and understanding the human induced land use changes forms one of the major study with respect to global climatic changes. An attempt study has been made to quantify the carbon absorption by land use changes through remote sensing technology. However, it focused on past carbon absorption changes. So prediction of future carbon absorption changes is insufficient. This study simulated land use change using the Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model and predicted future changes in carbon absorption considering climate change scenarios 4.5 and 8.5 of the Representative Concentration Pathways (RCP). Results of this study, in the RCP 4.5 scenarios there predicted to be loss of 7.92% of carbon absorption, but in the RCP 8.5 scenarios was 13.02%. Therefore, the approach used in this study is expected to enable exploration of future carbon absorption change considering other climate change scenarios.

KCI등재

2SAR 영상 정합 정확도 평가를 위한 FSIM 인자 활용 가능성

저자 : 김상완 ( Sang-wan Kim ) , 이동준 ( Dongjun Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 847-859 (13 pages)

다운로드

(기관인증 필요)

초록보기

최근 고해상도 위성 SAR 영상이 늘어남에 따라, 변화탐지, 영상 융합 등 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 커지고 있다. 영상 정합 결과에 대한 정량적 평가는 분석자에 의해 추출된 GCPs (Ground Control Points)를 이용한 RMSE (Root Mean Square Error) 값이 널리 사용되어 왔으나, 영상정합 결과의 정확도를 자동으로 측정하는 방법에 대한 연구는 미비한 실정이다. 본 연구에서는 SAR 영상 정합의 정확도 평가지표로, 단일채널 영상의 품질 평가 알고리즘으로 개발된 FSIM (Feature Similarity) 값을 적용하는 것에 대한 타당성 분석을 수행하였다. 다양한 관측각도 및 관측방향에서 수집된 TerraSAR-X staring spotlight 자료를 분석에 사용하였다. SAR 영상의 공간 해상도에 따른 FSIM 값 변화는 매우 작은 값을 보였다. 따라서, 다양한 공간해상도의 SAR 영상 간에도 동일한 척도를 가지고 FSIM 값을 사용할 수 있다. 단일 SAR 영상을 이용하여 정합 오차에 따른 FSIM값 변화를 분석하였으며, 이 값을 기준으로 서로 다른 관측조건에서 수집된 영상 간의 정합 오차에 따른 FSIM 값 변화를 분석하였다. 서로 다른 관측각 또는 관측방향 자료 조합에서, 관측기하 차이에 의해 FSIM 값은 다소 저하되었다. 토지피복별 FSIM 값 분석 결과에서, 도심지역에서 정합오차에 따른 FSIM 값의 변화가 가장 뚜렷하게 나타났다. 따라서, FSIM 값을 이용하여 영상정합의 정확도를 판별하기 위해서는 도심지역에서 산출된 FSIM 값을 이용하는 것이 바람직하다. FSIM 값은 SAR 영상 정합 정확도에 대한 지표로 사용될 수 있는 충분한 가능성이 있는 것으로 판단된다.


Recently, as the number of high-resolution satellite SAR images increases, the demand for precise matching of SAR images in change detection and image fusion is consistently increasing. RMSE (Root Mean Square Error) values using GCPs (Ground Control Points) selected by analysts have been widely used for quantitative evaluation of image registration results, while it is difficult to find an approach for automatically measuring the registration accuracy. In this study, a feasibility analysis was conducted on using the FSIM (Feature Similarity) index as a measure to evaluate the registration accuracy. TerraSAR-X (TSX) staring spotlight data collected from various incidence angles and orbit directions were used for the analysis. FSIM was almost independent on the spatial resolution of the SAR image. Using a single SAR image, the FSIM with respect to registration errors was analyzed, then use it to compare with the value estimated from TSX data with different imaging geometry. FSIM index slightly decreased due to the differences in imaging geometry such as different look angles, different orbit tracks. As the result of analyzing the FSIM value by land cover type, the change in the FSIM index according to the co-registration error was most evident in the urban area. Therefore, the FSIM index calculated in the urban was most suitable for determining the accuracy of image registration. It is likely that the FSIM index has sufficient potential to be used as an index for the co-registration accuracy of SAR image.

KCI등재

3GOCI와 AHI 자료를 활용한 에어로졸 광학두께 합성장 산출 연구

저자 : 강형우 ( Hyeongwoo Kang ) , 최원이 ( Wonei Choi ) , 박정현 ( Jeonghyun Park ) , 김세린 ( Serin Kim ) , 이한림 ( Hanlim Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 861-870 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 COMS (Communication, Oceanography and Meteorology Satellite) 위성의GOCI (Geostationary Ocean Color Imager) 센서와 Himawari-8 위성의 AHI (Advanced Himawari Imager) 센서에서 산출되는 에어로졸 광학두께 (Aerosol Optical Depth; AOD)를 활용하여 단일화된 AOD 합성장을 생산하였다. 위성 간의 공간해상도와 위치좌표계가 다르기 때문에 이를 맞춰주는 전처리 작업을 선행하였다. 이후 지상관측 기반인 AERONET (AErosol RObotic NETwork)의 레벨 1.5 AOD 자료를 사용하여 각 위성과 AERONET과의 상관관계 분석 및 추세를 보간하여 기존 위성 AOD 보다 정확한 위성 AOD 자료를 생산하였다. 이후 합성과정을 진행하며 최종적으로 시공간적으로 더 완벽하고 정확한 AOD 합성장을 생산하였다. 생산된 AOD 합성장의 제곱근 평균 오차(Root Mean Square Error; RMSE)는 0.13, 평균 편향(mean bias)는 0.05로, 기존의 GOCI AOD (RMSE: 0.15, Mean bias: 0.11)와 AHI AOD (RMSE: 0.15, Mean bias: 0.05) 보다 나은 성능을 보였다. 또한 합성된 AOD는 단일위성에서 구름으로 인하여 관측되지 못한 지역에서 시공간적으로 보다 완벽하게 생산되었음을 확인하였다.


In this study, fused Aerosol Optical Depth (AOD) data were produced using AOD products from the Geostationary Ocean Color Imager (GOCI) onboard Communication, Oceanography and Meteorology Satellite (COMS) satellite and the Advanced Himawari Imager (AHI) onboard Himawari-8. Since the spatial resolution and the coordinate system between the satellite sensors are different, a preprocessing was first preceded. After that, using the level 1.5 AOD dataset of AErosol RObotic NETwork (AERONET), which is ground-based observation, correlations and trends between each satellite AOD and AERONET AOD were utilized to produce more accurate satellite AOD data than the original satellite AODs. The fused AOD were found to be more accurate than the original satellite AODs. Root Mean Square Error (RMSE) and mean bias of the fused AODs were calculated to be 0.13 and 0.05, respectively. We also compared errors of the fused AODs against those of the original GOCI AOD (RMSE: 0.15, mean bias: 0.11) and the original AHI AOD (RMSE: 0.15, mean bias: 0.05). It was confirmed that the fused AODs have better spatial coverage than the original AODs in areas where there are no observations due to the presence of cloud from a single satellite.

KCI등재

4항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구

저자 : 이성혁 ( Seong-hyeok Lee ) , 이명진 ( Moung-jin Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 871-884 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구의 목적은 항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터를 구축, 검증 및 알고리즘 적용의 효율화 방안을 연구하였다. 이를 위하여 토지피복 8개 항목에 대하여 고해상도의 항공영상 및 Sentinel-2 인공위성에서 얻은 이미지를 사용하여 0.51 m 및 10 m Multi-resolution 데이터셋을 구축하였다. 또한, 학습 데이터의 구성은 Fine data (총 17,000개) 와 Coarse data (총 33,000개)를 동시 구축 및 정밀한 변화 탐지 및 대규모 학습 데이터셋 구축이라는 2가지 목적을 달성하였다. 학습 데이터의 정확도를 위한 검수는 정제 데이터, 어노테이션 및 샘플링으로 3단계로 진행하였다. 최종적으로 검수가 완료된 학습데이터를 Semantic Segmentation 알고리즘 중 U-Net, DeeplabV3+에 적용하여, 결과를 분석하였다. 분석결과 항공영상 기반의 토지피복 평균 정확도는 U- Net 77.8%, Deeplab V3+ 76.3% 및 위성영상 기반의 토지피복에 대한 평균 정확도는 U-Net 91.4%, Deeplab V3+ 85.8%이다. 본 연구를 통하여 구축된 고해상도 항공영상 및 위성영상을 이용한 토지피복 인공지능 학습 데이터셋은 토지피복 변화 및 분류에 도움이 되는 참조자료로 활용이 가능하다. 향후 우리나라 전체를 대상으로 인공지능 학습 데이터셋 구축 시, 토지피복을 연구하는 다양한 인공지능 분야에 활용될 것으로 기대된다.


The purpose of this study was to determine ways to increase efficiency in constructing and verifying artificial intelligence learning data on land cover using aerial and satellite images, and in applying the data to AI learning algorithms. To this end, multi-resolution datasets of 0.51 m and 10 m each for 8 categories of land cover were constructed using high-resolution aerial images and satellite images obtained from Sentinel-2 satellites. Furthermore, fine data (a total of 17,000 pieces) and coarse data (a total of 33,000 pieces) were simultaneously constructed to achieve the following two goals: precise detection of land cover changes and the establishment of large-scale learning datasets. To secure the accuracy of the learning data, the verification was performed in three steps, which included data refining, annotation, and sampling. The learning data that was finally verified was applied to the semantic segmentation algorithms U-Net and DeeplabV3+, and the results were analyzed. Based on the analysis, the average accuracy for land cover based on aerial imagery was 77.8% for U-Net and 76.3% for Deeplab V3+, while for land cover based on satellite imagery it was 91.4% for U-Net and 85.8% for Deeplab V3+. The artificial intelligence learning datasets on land cover constructed using high-resolution aerial and satellite images in this study can be used as reference data to help classify land cover and identify relevant changes. Therefore, it is expected that this study's findings can be used in the future in various fields of artificial intelligence studying land cover in constructing an artificial intelligence learning dataset on land cover of the whole of Korea.

KCI등재

5천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석

저자 : 김희애 ( Hee-ae Kim ) , 정성래 ( Sung-rae Chung ) , 오수민 ( Soo Min Oh ) , 이병일 ( Byung-il Lee ) , 신인철 ( In-chul Shin )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 885-901 (17 pages)

다운로드

(기관인증 필요)

초록보기

천리안위성 2A호의 2분 주기 고속 관측(rapid-scan) 자료를 이용하여, 가시·수증기·적외 채널의 시간 해상도와 표적의 크기가 해당 채널의 중규모 대기운동벡터 생산에 미치는 영향을 분석하였다. 중규모 대기운동벡터 산출을 위하여 2-10분의 영상 시간 간격 변화 하에서 표적의 크기를 8×8에서 40×40 화소 크기로 변환시키며, 시·공간적인 조건 변화에 따른 벡터 생산량과 평균 속력, 오차 특성의 변화 양상을 비교하였다. 그 결과, 표적의 크기가 작을수록 위성의 시간 간격 변화에 따른 벡터 개수의 변화와, 표준화된 평균 제곱근 편차(Normalized Root Mean Squared Vector Difference; NRMSVD) 값의 변화가 더욱 뚜렷해졌다. 또한 고도별 오차 특성 분석 결과에서는 평균 속력이 낮고 대기 현상의 시·공간 규모가 작은 하층(700-1000 hPa)의 경우, 짧은 시간 간격의 영상 자료와 작은 표적을 이용하는 것이 벡터 산출에 더욱 유리하게 작용하는 것을 확인할 수 있었다. 위성의 시간 간격과 표적의 크기는 대기 순환의 시·공간 규모와 밀접한 연관이 있는 요소이다. 따라서, 대기운동벡터 활용 목적에 맞게 표적 크기와 위성 시간 간격을 최적화하는 과정이 필요하며, 중규모 기상현상의 실황 분석을 위한 대기운동벡터 산출 알고리즘에서는 표적 크기와 영상 시간 간격을 각각 16×16, 4분으로 설정해주는 것이 가장 적합하다고 판단된다.


This paper illustrates the impact of the temporal gap between satellite images and target size in mesoscale atmospheric motion vector (AMV) algorithm. A test has been performed using GEO-KOMPSAT-2A (GK2A) rapid-scan data sets with a temporal gap varying between 2 and 10 minutes and a target size between 8×8 and 40×40. Results show the variation of the number of AMVs produced, mean AMV speed, and validation scores as a function of temporal gap and target size. As a results, it was confirmed that the change in the number of vectors and the normalized root-mean squared vector difference (NRMSVD) became more pronounced when smaller targets are used. In addition, it was advantageous to use shorter temporal gap and smaller target size for the AMV calculation in the lower layer, where the average speed is low and the spatio-temporal scale of atmospheric phenomena is small. The temporal gap and the target size are closely related to the spatial and temporal scale of the atmospheric circulation to be observed with AMVs. Thus, selecting the target size and temporal gap for an optimum calculation of AMVs requires considering them. This paper recommends that the optimized configuration to be used operationally for the near-real time analysis of mesoscale meteorological phenomena is 4-min temporal gap and 16×16 pixel target size, respectively.

KCI등재

6오픈소스 GIS 프로그램의 지형인자 계산 비교: 도서지역 경사도와 지형습윤지수 중심으로

저자 : 이보라 ( Bora Lee ) , 이호상 ( Ho-sang Lee ) , 이광수 ( Gwang-soo Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 903-916 (14 pages)

다운로드

(기관인증 필요)

초록보기

지형은 고도, 경사, 측면으로 설명되는 지표면의 물리적인 모양을 나타내는 것으로 지형적 조건에 따라 에너지의 이동이 결정된다. 이것은 태양 에너지를 얼마나 많이 받을지, 바람이나 비가 얼마나 많은 영향을 미칠지 등에 대한 중요한 결정 요인들로 지표면 상에 존재하는 모든 생물, 특히 산림 식생의 입지 환경에 큰 영향을 준다. 도서지역 산림과 같이 자연적으로 형성된 지형 인자가 산림 식생의 생태환경을 결정하는 요인이 될 때 보다 정확한 지형 인자들의 계산은 도서산림의 입지환경을 이해하는데 매우 중요하다. 최근에는 연구자, 학교, 산업 및 정부를 위해 수많은 무료오픈소스 소프트웨어 지리정보시스템 프로그램(Free Open Source Software Geographic Information Systems, FOSS GIS)들이 이러한 지형인자들을 보다 정확하게 계산하기 위해 다양한 알고리즘을 적용하고 있다. FOSS GIS 프로그램은 사용자 요구에 맞게 수정이 가능한 유연한 알고리즘을 제공한다. 이와 같은 수요에 맞춰 이 연구에서는 지형 분석이 특히 중요한 도서지역 산림을 대상으로 하여 FOSS GIS 프로그램들의 지형인자 계산 결과값을 비교해 보고 향후 지역 생태 연구에 있어 지형 인자 계산 방법을 결정할 때 그 기준을 마련하고자 한다. 연구 지역은 전라남도 도서 지역을 대상으로 하였고 FOSS GIS 프로그램 중 가장 널리 사용되는 GRASS GIS와 SAGA GIS로 처리하였다. 입지환경에 있어 가장 널리 사용되는 설명인자인 경사도와 TWI(Topographical Wetness Index) 지도를 각 FOSS GIS 프로그램으로 생성하고 그 차이를 분석하여 각 FOSS GIS 프로그램의 장단점을 토의하였다.


An area's topography refers to the shape of the earth's surface, described by its elevation, slope, and aspect, among other features. The topographical conditions determine energy flows that move water and energy from higher to lower elevations, such as how much solar energy will be received and how much wind or rain will affect it. Another common factor, the topographic wetness index (TWI), is a calculation in digital elevation models of the tendency to accumulate water per slope and unit area, and is one of the most widely referenced hydrologic topographic factors, which helps explain the location of forest vegetation. Analyses of topographical factors can be calculated using a geographic information system (GIS) program based on digital elevation model (DEM) data. Recently, a large number of free open source software (FOSS) GIS programs are available and developed for researchers, industries, and governments. FOSS GIS programs provide opportunities for flexible algorithms customized for specific user needs. The majority of biodiversity in island areas exists at about 20% higher elevations than in land ecosystems, playing an important role in ecological processes and therefore of high ecological value. However, island areas are vulnerable to disturbances and damage, such as through climate change, environmental pollution, development, and human intervention, and lacks systematic investigation due to geographical limitations (e.g. remoteness; difficulty to access). More than 4,000 of Korea's islands are within a few hours of its coast, and 88% are uninhabited, with 52% of them forested. The forest ecosystems of islands have fewer encounters with human interaction than on land, and therefore most of the topographical conditions are formed naturally and affected more directly by weather conditions or the environment. Therefore, the analysis of forest topography in island areas can be done more precisely than on its land counterparts, and therefore has become a major focus of attention in Korea. This study is focused on calculating the performance of different topographical factors using FOSS GIS programs. The test area is the island forests in Korea's south and the DEM of the target area was processed with GRASS GIS and SAGA GIS. The final slopes and TWI maps were produced as comparisons of the differences between topographic factor calculations of each respective FOSS GIS program. Finally, the merits of each FOSS GIS program used to calculate the topographic factors is discussed.

KCI등재

7무인기 기반 다중분광 영상을 이용한 벼 쓰러짐 영역의 특성 분석

저자 : 문현동 ( Hyun-dong Moon ) , 류재현 ( Jae-hyun Ryu ) , 나상일 ( Sang-il Na ) , 장선웅 ( Seon Woong Jang ) , 신서호 ( Seo-ho Sin ) , 조재일 ( Jaeil Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 917-926 (10 pages)

다운로드

(기관인증 필요)

초록보기

벼 쓰러짐은 벼농사의 대표적인 기상재해 피해로써 강한 바람과 강우로 발생한다. 원격탐사 기법은 넓은 지역의 벼 쓰러짐을 효과적으로 탐지하기에 적절한 방법이다. 실제로 벼 쓰러짐은 벼 키가 최대인 생육 시기에 주로 발생하여 군락의 큰 구조적 변화를 불러오기 때문에 분광 반사도 차이를 야기한다. 따라서, 본고에서는 나주에 위치한 전남농업기술원의 2020년 태풍에 의한 논벼 피해를 444 nm부터 842 nm까지 10개 밴드로 구성된 카메라 영상으로 분석하였다. 드론 영상마다 벼 쓰러짐 피해를 받은 영역과 벼 쓰러짐 피해가 없는 영역으로 구분하여 벼 쓰러짐 영역의 분광 반사도 특성 차이와 식생 탐지에 주로 사용되는 식생지수인 NDVI (Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge), CCI (Chlorophyll Carotenoid Index)의 변화를 살펴보았다. 반사도 값의 변화는 밴드6(668 nm)에서 가장 적었으며, 이를 중심으로 밴드 파장이 감소와 증가할수록 일반 논벼 보다 쓰러짐 영역 반사도가 커졌다. 또한, 쓰러진 벼를 묶어 세운 복구 지역은 대부분의 밴드에 걸쳐 반사도가 크게 감소함을 볼 수 있었다. NDVI와 NDRE는 벼 쓰러짐 영역에 대해 민감하게 반응하였으나, 그 반응 대상 및 정도는 서로 달랐다. 본 연구의 결과는 향후 드론과 위성을 이용한 벼 쓰러짐 피해 조사 알고리즘에 기여될 것으로 기대한다.


Lodging rice is one of critical agro-meteorological disasters. In this study, the UAV-based multispectral imageries before and after rice lodging in rice paddy field of Jeollanamdo agricultural research and extension services in 2020 was analyzed. The UAV imagery on 14th Aug. includes the paddy rice without any damage. However, 4th and 19th Sep. showed the area of rice lodging. Multispectral camera of 10 bands from 444 nm to 842 nm was used. At the area of restoration work against lodging rice, the reflectance from 531 nm to 842 nm were decreased in comparison to un-lodging rice. At the area of lodging rice, the reflectance of around 668 nm had small increases. Further, the blue and NIR (Near-Infrared) wavelength had larger. However, according to the types of lodging, the change of reflectance was different. The NDVI (Normalized Difference Vegetation Index) and NDRE (Normalized Difference Red Edge) shows dome sensitivities to lodging rice, but they were different to types of lodging. These results will be useful to make algorithm to detect the area of lodging rice using a UAV.

KCI등재

8신경망 모델을 사용한 편대비행 저궤도위성 가속도계 데이터 예측 기법

저자 : 김민규 ( Mingyu Kim ) , 김정래 ( Jeongrae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 927-938 (12 pages)

다운로드

(기관인증 필요)

초록보기

편대 비행하는 저궤도위성에는 비슷한 크기의 비중력 섭동이 일정한 시간 차이를 두고 가해진다. 이러한 시간상관관계를 이용하면 한 개 위성의 가속도계에서 측정된 가속도 값으로 다른 편대비행 저궤도위성의 비중력가속도를 추정할 수 있다. 편대비행 저궤도위성인 GRACE 및 GRACE-FO 위성에서 한 개 위성의 가속도계 데이터를 사용할 수 없는 기간이 존재하는데, 앞서 기술된 시간 이식 기법이 JPL (Jet Propulsion Laboratory)에서 공식적으로 가속도계 데이터 복원 시 사용되고 있다. 본 논문에서는 기존의 시간 이식 기법의 가속도계 추정 정확도를 개선하기 위하여 신경망 (neural network; NN) 모델 기반 편대비행 저궤도위성 가속도계 데이터 추정 방법을 제안하였다. 시간 이식 기법은 위성의 위치 및 우주환경요소 등을 반영할 수 없지만, NN 모델은 이를 모델 입력으로 사용할 수 있으므로 예측 정확도를 높일 수 있다. 1개월간 NN 모델을 사용하여 가속도계 예측 시험을 수행하고 시간 이식 기법과 예측 정확도를 비교하였다. 그 결과 along-track 및 radial 방향에서 NN 모델의 가속도계 데이터의 예측 오차는 시간 이식 기법에 비해 각각 55.0%, 40.1% 감소하였다.


A similar magnitude of non-gravitational perturbations are act on the formation flying low earth orbit satellites with a certain time difference. Using this temporal correlation, the non-gravity acceleration of the low earth orbiting satellites can be transferred for the other satellites. There is a period in which the accelerometer data of one satellite is unavailable for GRACE and GRACE-FO satellites. In this case, the accelerometer data transplant method described above is officially used to recover the accelerometer data at the Jet Propulsion Laboratory (JPL). In this paper, we proposed a model for predicting accelerometer data of formation flying low earth orbit satellites using a neural network (NN) model to improve the estimation accuracy of the transplant method. Although the transplant method cannot reflect the satellite's position and space environmental factors, the NN model can use them as model inputs to increase the prediction accuracy. A prediction test of an accelerometer data using NN model was performed for one month, and the prediction accuracy was compared with the transplant method. The NN model outperforms the transplant method with 55.0% and 40.1% error reduction in the along-track and radial directions, respectively.

KCI등재

9산불 후 식생 회복 모니터링을 위한 Sentinel-2 위성영상의 RGB 합성기술

저자 : 김상일 ( Sang-il Kim ) , 안도섭 ( Do-seob Ahn ) , 김승철 ( Seung-chul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 939-946 (8 pages)

다운로드

(기관인증 필요)

초록보기

산불로 인한 피해지역의 산림 변화를 모니터링하는 것은 식생복원에 중요한 정보를 제공하며, 자연 재해를 완화하고 복구하기 위해 공간정보를 가지는 원격탐사 자료는 모니터링에 필요한 유용한 정보를 제공하는 것으로 알려져 있다. 하지만 원격탐사자료를 활용한 복구 측면에 초점 두어 연구된 사례가 미비한 상황이다. 본 연구는 화재 후 식생회복을 모니터링하기 위한 것으로, Sentinel-2 위성 데이터를 사용하여 산불 피해 지역을 모니터링하는 방법을 제시하는 것을 목적으로 한다. 산불피해지역의 식생회복 모니터링을 위해 Tasseled Cap 선형회귀 추세를 기반으로 RGB 합성기술을 제안하였다. 이러한 위성영상을 활용한 원격탐사 시각화 기법을 통해 효과적인 모니터링 가능성을 확인할 수 있었다.


Monitoring of post wildfire provides important information for vegetation restoration. In particular, remote sensing data are known to provide useful information necessary for monitoring. However, there are insufficient research results which is monitoring the vegetation recovery using remote sensing data. This study is directed to monitoring post-wildfire vegetation restoration. It proposes a method for monitoring vegetation restoration using Sentinel-2 satellite data by compositing Tasseled Cap linear regression trend in a post wildfire study sites. Although it is a simple visualization technique using satellite images, it was able to confirm the possibility of effective monitoring.

KCI등재

10무인비행체 탑재 다중분광 센서별 반사율 및 식생지수 변화 비교

저자 : 이경도 ( Kyung-do Lee ) , 안호용 ( Ho-yong Ahn ) , 류재현 ( Jae-hyun Ryu ) , 소규호 ( Kyu-ho So ) , 나상일 ( Sang-il Na )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 947-958 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 무인비행체에 탑재해서 활용되고 있는 다중분광 센서의 센서별 반사율 및 식생지수를 산정하여 시계열 작황분석을 위한 센서별, 센서간 활용 가능성을 평가하기 위해 수행하였다. RedEdge-MX, S110 NIR, Sequioa, P4M 등 4종의 무인비행체 탑재 다중분광센서에 대하여 2020년 9월 14일과 9월 15일에 걸쳐 오전, 오후 각 1회, 총 4회씩 항공영상을 촬영하고 반사율 및NDVI를 산정하여 비교하였다. 반사율의 경우 모든 센서에서 시계열 변동계수가 평균 약 10% 이상의 값을 보여 활용에는 한계가 있는 것으로 나타났다. 작물 시험구에 대한 센서별NDVI 변동계수는 식생이 우거져 활력도가 높은 시험구에서 평균 1.2~3.6%의 값을 보여 5% 이내의 변동성을 보였다. 그러나 이는 청천일의 변동계수에 비해서는 높은 값을 보인 것으로서 실험 기간 동안 오전, 오후에 구름 등 기상환경이 달랐기 때문으로 판단되며 시계열 작황 분석을 위한 정밀NDVI 산정 시에는 일정한 광 환경을 유지할 수 있는 촬영 계획 수립과 이행이 필요할 것으로 판단된다. 무인비행체 다중분광센서 간NDVI를 상호 비교한 결과 본 실험에서는 RedEdeg-MX 센서의 경우 안정적인 광 환경 내에서 동종의 센서를 여러 대 사용하더라도NDVI 값의 특별한 보정 없이 함께 활용할 수 있을 것으로 판단된다. RedEdge-MX, P4M, Sequioa 센서는 상호 선형적인 관계를 보였으나NDVI 간의 off-set 보정을 통한 공동 활용 가능성 평가를 위해서는 보완 실험이 필요할 것으로 생각된다.


This study was conducted to provide basic data for crop monitoring by comparing and analyzing changes in reflectance and vegetation index by sensor of multi-spectral sensors mounted on unmanned aerial vehicles. For four types of unmanned aerial vehicle-mounted multispectral sensors, such as RedEdge-MX, S110 NIR, Sequioa, and P4M, on September 14 and September 15, 2020, aerial images were taken, once in the morning and in the afternoon, a total of 4 times, and reflectance and vegetation index were calculated and compared. In the case of reflectance, the time-series coefficient of variation of all sensors showed an average value of about 10% or more, indicating that there is a limit to its use. The coefficient of variation of the vegetation index by sensor for the crop test group showed an average value of 1.2 to 3.6% in the crop experimental sites with high vitality due to thick vegetation, showing variability within 5%. However, this was a higher value than the coefficient of variation on a clear day, and it is estimated that the weather conditions such as clouds were different in the morning and afternoon during the experiment period. It is thought that it is necessary to establish and implement a UAV flight plan. As a result of comparing the NDVI between the multi-spectral sensors of the unmanned aerial vehicle, in this experiment, it is thought that the RedEdeg-MX sensor can be used together without special correction of the NDVI value even if several sensors of the same type are used in a stable light environment. RedEdge-MX, P4M, and Sequioa sensors showed a linear relationship with each other, but supplementary experiments are needed to evaluate joint utilization through off-set correction between vegetation indices.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1청미천 논지에서의 증발산량 작물계수 산정에 관한 연구

저자 : 김기영 ( Kiyoung Kim ) , 이용준 ( Yongjun Lee ) , 정성원 ( Sungwon Jung ) , 이연길 ( Yeongil Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 883-893 (11 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 두 가지 방법으로 작물계수를 산정하고, 그 결과를 평가하였다. 첫 번째 방법에서는 GLDAS 자료를 청미천 플럭스타워의 증발산량 실측값과 비교하여 적정성을 평가한 뒤 GLDAS 기반 실제증발산량을 잠재증발산량으로 나눠 작물계수(GLDAS Kc)를 산정하였으며, 두 번째 방법에서는 MODIS기반 식생지수(NDVI, EVI, LAI, SAVI)와 플럭스타워에서의 토양수분 실측치를 이용해 다중선형회귀분석으로 작물계수(SM&VI Kc)를 산정하였다. 전체기간에 대한 두 가지 작물계수(GLDAS Kc, SM&VI Kc)를 통계(mean, bias, RMSE, IOA)를 통해 비교해 본 결과 평균값은 각각 0.412와 0.378, bias는 0.031과 -0.004, RMSE는 0.092와 0.069, 적합도 지표(IOA)는 0.944와 0.958로 두 방식 모두 전반적으로 실측값과 유사한 패턴을 보여주었다. 그라나 SM&VI 회귀모형 방식이 더 우수한 것으로 나타났다. 또한, 벼의 생장 단계별로 GLDAS Kc와 SM&VI Kc에 대한 통계적 평가를 수행해본 결과 초기와 중기에는 GLDAS 기반의 Kc가 더 우수했으며, 후기에는 SM&VI 기반의 Kc가 더 우수한 것으로 나타났다. 이는 봄철에는 황사, 여름철에는 비구름으로 MODIS 센서의 정확성이 감소했기 때문인 것으로 판단된다. 향후 연구를 통해 MODIS 센서의 관측 정확성이 향상된다면, SM&VI 기반 작물계수 산정방식의 정확성 역시 향상될 것으로 판단되며, 미계측 유역의 작물계수 산정이나 작물계수의 예측에 사용될 수 있을 것으로 판단된다.

KCI등재

2무인기 소프트웨어에서 처리된 표정요소를 이용한 도화품질 예측기술 개발 및 비교분석

저자 : 임평채 ( Pyung-chae Lim ) , 손종환 ( Jonghwan Son ) , 김태정 ( Taejung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 895-905 (11 pages)

다운로드

(기관인증 필요)

초록보기

현재 현업에서 사용되고 있는 상용 무인기 영상처리 소프트웨어는 카메라 캘리브레이션 정보나 영상전체에 대한 블록 번들조정 정확도만 제공할 뿐 스테레오 페어의 실제 도화 가능여부에 대한 정확도는 거의 제공하지 않는다. 본 논문에서는 무인기 영상처리 소프트웨어에서 산출된 표정요소를 사용하여 도화품질을 산출하고 실제 도화기에 적용하여 도화품질의 신뢰성에 대해서 분석하였다. 도화품질은 Y시차 정확도, 상대모델 정확도, 절대모델 정확도의 3가지 정확도로 정의하였다. Y시차 정확도는 스테레오 페어간 입체시 여부를 판단할 수 있는 정확도이다. 상대모델 정확도는 모델 좌표계 상에서 스테레오 페어간 상대적인 번들조정 정확도이다. 절대모델 정확도는 절대 좌표계에서 번들조정 정확도이다. 실험데이터는 도심지를 대상으로 회전익에서 취득된 GSD 5 cm급의 영상 723장을 사용하여 도화품질을 분석하였다. 연구진이 개발한 기술을 사용해 예측한 상대모델 정확도와 실제 도화기에서 관측한 정확도의 최대오차는 0.11 m로 정밀한 결과를 보여주었다. 절대모델 정확도도 마찬가지로, 도화기에서 관측한 정확도의 최대오차는 0.16 m로 정밀한 결과를 보여주었다.

KCI등재

3Google Map을 이용한 GCP 칩의 품질 분석

저자 : 박형준 ( Hyeongjun Park ) , 손종환 ( Jong-hwan Son ) , 신정일 ( Jung-il Shin ) , 권기억 ( Ki-eok Kweon ) , 김태정 ( Taejung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 907-917 (11 pages)

다운로드

(기관인증 필요)

초록보기

최근 국토 모니터링, 지형 분석 등 많은 분야에서 고해상도 위성영상의 수요가 증가와 함께 기하보정의 필요성이 증가하고 있다. 자동 정밀 기하보정 방법으로 GCP(Ground Control Point) 칩과 위성영상간의 정합을 통해 지상기준점을 자동으로 추출하는 방법이 있다. 자동 정밀 기하보정은 GCP 칩과 위성영상의 정합 성공률이 중요하다. 따라서 제작된 GCP 칩의 정합 성능 평가가 중요하다. GCP 칩의 정합 성능 평가를 위해 국토관측 위성용으로 구축된 총 3,812점의 GCP 칩을 실험 자료로 사용했다. KOMPSAT-3A 영상과 Google Map의 GCP 칩 정합 결과를 분석한 결과 유사한 결과를 얻을 수 있었다. 따라서 Google Map 위성영상으로 고해상도 위성영상을 충분히 대체할 수 있다고 판단했다. 또한 GCP 칩의 정합 성능 검증에 필요한 시간을 줄이기 위해 자동화된 방법으로 Google Map의 중심점과 오차 반경을 이용한 방법을 제시했다. 실험 결과 최적의 오차 반경은 17 pixel(약 8.5 m)로 설정하는 것이 가장 좋은 분류 정확도를 보였다. Google Map 위성영상과 자동화된 검증 방법으로 남한 전역에 구축된 GCP 칩 3,812개의 정합 성능 평가를 진행했으며 남한에 구축된 GCP 칩은 약 94%의 정합 성공률을 보였다. 이후 정합에 실패한 GCP 칩을 분석하여 주요 정합 실패원인을 분석하였다. 분석 결과 남한 전역에 구축된 GCP 칩 중 재제작이 필요한 GCP 칩을 제외한 나머지 GCP 칩은 국토위성영상 자동 기하보정에 충분히 사용할 수 있다.

KCI등재

4GLDAS 수문기상인자를 이용한 초미세먼지 농도 추정

저자 : 이슬찬 ( Seulchan Lee ) , 정재환 ( Jaehwan Jeong ) , 박종민 ( Jongmin Park ) , 전현호 ( Hyunho Jeon ) , 최민하 ( Minha Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 919-932 (14 pages)

다운로드

(기관인증 필요)

초록보기

미세먼지는 인간 활동에 의한 오염물질 배출에 의해 발생하는 것이 일반적이지만, 수문기상 조건에 따라 이동, 심화, 소멸 과정에서 매우 복잡한 메커니즘을 지니고 있으므로 효과적인 미세먼지 대책 마련을 위해서는 수문기상인자와 미세먼지 간의 상관성에 대한 이해가 필수적이다. 현재 우리나라의 미세먼지 농도 관측 및 예보는 지점 측정소에서 농도를 측정하고, 이 자료를 기반으로 측정소가 위치하지 않는 지역의 값을 추정함으로써 이루어지고 있다. 이러한 관측 방식 및 자료는 공간적 대표성을 갖지 못하기 때문에 관측소와의 거리가 먼 지역의 정확한 미세먼지 농도를 파악하는 것이 불가능하며, 미세먼지의 이동, 심화, 소멸 단계를 추적하는데 어려움이 있다. 본 연구에서는 Global Land Data Assimilation System (GLDAS)의 다양한 수문기상인자를 사용하여, 베이지안 모델 평균(Bayesian Model Averaging, BMA)을 통해 초미세먼지(PM2.5)와 유의미한 상관성을 갖는 인자를 선별하였다. 선별된 인자는 MODerate Resolution Imaging Spectroradiometer (MODIS)의 Aerosol Optical Depth (AOD) 자료와 함께 계절별 PM2.5 농도 산출 모델을 구축하는데 활용되었으며, 산출 결과를 매핑하여 PM2.5 농도의 공간 분포를 파악하고자 하였다. 지점 기반 자료와의 비교를 통해 구축된 모델을 검증하였을 때, 측정된 PM2.5 농도와 높은 상관성(R ~0.7; IOA ~0.78; RMSE ~7.66 μg/m3)을 나타냈으며, 지역별로 나누어 비교할 경우 데이터의 분포는 유사하나 상관계수의 차이를 보이는 것을 확인할 수 있었다(R: 0.32-0.82). 모델 산출 자료를 활용하여 PM2.5 농도를 매핑한 결과 기존 내삽 방법에 비해 시공간적 변동성을 더욱 잘 표현하는 것을 확인하였다. 추후 연구 지역을 동아시아 지역으로 확장 시킨다면 국내외 미세먼지 발생원의 파악 및 이동 양상에 대한 분석에 용이할 것으로 기대된다.

KCI등재

5DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석

저자 : 한수정 ( Soojeong Han ) , 한향선 ( Hyangsun Han ) , 이훈열 ( Hoonyol Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 933-944 (12 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 영상레이더(synthetic aperture radar; SAR) 이중차분간섭기법(Double-Differential Interferometric SAR; DDInSAR)을 이용하여 남극 로스 빙붕(Ross Ice Shelf)의 동쪽(A지역)과 서쪽(B지역)에 위치한 육지 경계부 지역의 조위변형을 분석하고, 조위예측 모델의 정밀도와 빙붕의 영률(Young's modulus) 추정을 위해 2015-2016년에 획득된 총7장의 Sentinel-1A SAR 영상을 획득하였다. 먼저, 남극 로스해(Ross Sea)에 대한 대표적인 조위예측 모델인 Ross Sea Height-based Tidal Inverse (Ross_Inv) 모델과 DDInSAR영상에서 추출된 빙붕의 조위변형을 비교한 결과, 모델의 조위예측 오차는 동쪽에서는 3.86 cm로 분석되었으며 조위모델에서 역기압효과가 필수적으로 보정되어야 함을 확인하였다. 그러나 서쪽에서는 역기압효과 보정 후에도 큰 오차가 발생하여 조위모델이 부정확할 수 있음을 확인했다. 또한, 조위변형이 나타나는 힌지 영역(hinge zone)의 폭과 얼음두께의 상관성을 나타내는 1차원 탄성 보 모델에 의거하여 얼음의 영률을 계산하였다. 이를 위해 DDInSAR 영상에서 조위에 의한 변위가 나타나기 시작하는 곳을 지반선(grounding line)으로, 조위에 의한 최대변위가 나타나는 지점을 힌지선(hinge line)으로 새롭게 정의했고, 이 두 선 사이를 힌지 영역으로 정의했다. 반무한 평면체를 가정한 1차원 탄성 보 모델에 의하면 힌지 영역의 폭은 얼음두께의 0.75승에 정비례한다. DDInSAR에서 나타나는 힌지영역 중 지반선과 힌지선이 직선에 가까운 지역에서 힌지 영역의 폭을 측정하였고, 이를 BEDMAP2 얼음 두께의 0.75승과의 선형 회귀 분석을 통해 로스 빙붕 동쪽과 서쪽 힌지 영역의 영률을 1.77±0.73 GPa로 추정할 수 있었다. 이러한 방법으로 향후 Sentinel-1 영상이 축적되면 더 정밀한 영률을 추정할 수 있을 것으로 기대된다.

KCI등재

6SURF 기법과 상호정보기법을 활용한 농경지 지역 무인항공기 영상 간 정밀영상등록

저자 : 김태헌 ( Taeheon Kim ) , 이기림 ( Kirim Lee ) , 이원희 ( Won Hee Lee ) , 염준호 ( Junho Yeom ) , 정세정 ( Sejung Jung ) , 한유경 ( Youkyung Han )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 945-957 (13 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 무인항공기(Unmanned Aerial Vehicle, UAV)를 활용하여 취득된 농경지 지역에 대한 영상 간 기하 오차를 제거하기 위한 정밀영상등록(Coarse to Fine Image Registration) 방법론을 제시한다. 먼저 무인항공기를 활용하여 농경지 지역에 대한 영상을 취득한 후 정사영상을 생성하였다. 영상등록 시 오차를 유발하는 오정합쌍이 추출되는 확률을 감소시키기 위해 생성된 정사영상의 메타데이터를 기반으로 관심지역을 선정하여 탐색영역을 최소화하였다. 그리고 Speeded Up Robust Features (SURF) 기법을 활용하여 추출된 정합쌍(Tiepoints)을 기반으로 초기영상등록을 수행하여 정사영상 간 기하 오차를 전반적으로 제거하였다. 이어서 영상내에 두드러진 공간특성이나 구조가 없어도 효과적으로 정합쌍 추출이 가능한 상호정보(Mutual Information)기법을 통해 추출된 정합쌍을 활용하여 정밀영상등록을 수행하였다. 총 8장의 정사영상을 이용하여 제안기법의 우수성 및 효율성을 검증하기 위해 SURF 기법, 상호정보기법을 개별적으로 활용하여 영상등록을 수행한 결과와 비교분석을 수행하였다. 그 결과, 제안기법을 활용한 경우 효과적으로 정사영상 간 기하 오차가 제거된 것을 확인하였다.

KCI등재

7CNN 기반 초분광 영상 분류를 위한 PCA 차원축소의 영향 분석

저자 : 곽태홍 ( Taehong Kwak ) , 송아람 ( Ahram Song ) , 김용일 ( Yongil Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 959-971 (13 pages)

다운로드

(기관인증 필요)

초록보기

대표적인 딥러닝(deep learning) 기법 중 하나인 Convolutional Neural Network(CNN)은 고수준의 공간-분광 특징을 추출할 수 있어 초분광 영상 분류(Hyperspectral Image Classification)에 적용하는 연구가 활발히 진행되고 있다. 그러나 초분광 영상은 높은 분광 차원이 학습 과정의 시간과 복잡도를 증가시킨다는 문제가 있어 이를 해결하기 위해 기존 딥러닝 기반 초분광 영상 분류 연구들에서는 차원축소의 목적으로 Principal Component Analysis (PCA)를 적용한 바 있다. PCA는 데이터를 독립적인 주성분의 축으로 변환시킬 수 있어 분광 차원을 효율적으로 압축할 수 있으나, 분광 정보의 손실을 초래할 수 있다. PCA의 사용 유무가 CNN 학습의 정확도와 시간에 영향을 미치는 것은 분명하지만 이를 분석한 연구가 부족하다. 본 연구의 목적은 PCA를 통한 분광 차원축소가 CNN에 미치는 영향을 정량적으로 분석하여 효율적인 초분광 영상 분류를 위한 적절한 PCA의 적용 방법을 제안하는 데에 있다. 이를 위해 PCA를 적용하여 초분광 영상을 축소시켰으며, 축소된 차원의 크기를 바꿔가며 CNN 모델에 적용하였다. 또한, 모델 내의 컨볼루션(convolution) 연산 방식에 따른 PCA의 민감도를 분석하기 위해 2D-CNN과 3D-CNN을 적용하여 비교 분석하였다. 실험결과는 분류정확도, 학습시간, 분산 비율, 학습 과정을 통해 분석되었다. 축소된 차원의 크기가 분산 비율이 99.7~8%인 주성분 개수일 때 가장 효율적이었으며, 3차원 커널 경우 2D-CNN과는 다르게 원 영상의 분류정확도가 PCA-CNN보다 더 높았으며, 이를 통해 PCA의 차원축소 효과가 3차원 커널에서 상대적으로 적은 것을 알 수 있었다.

KCI등재

8무인항공기에서 생성된 포인트 클라우드의 평면성 분석을 통한 자동 건물 모델 생성 기법

저자 : 김한결 ( Han-gyeol Kim ) , 황윤혁 ( Yunhyuk Hwang ) , 이수암 ( Sooahm Rhee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 973-985 (13 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 저비용으로 생성할 수 있는 무인항공기 기반의 포인트 클라우드를 사용하여 평면성 분석을 통해 지면과 건물 영역을 분리하고 자동으로 건물 모델을 생성하는 방법을 제안한다. 제안하는 방법은 총 다섯 단계로 구성된다. 첫 단계에서는 입력되는 포인트 클라우드의 평면성을 분석하여 포인트 클라우드를 구성하는 평면들을 추출하였다. 두 번째 단계에서는 추출된 평면들을 분석하여 지표면에 해당하는 평면을 찾고 포인트 클라우드에서 해당 평면 기준으로 포인트들을 제거하였다. 세 번째 단계에서는 지표면이 제거된 포인트 클라우드를 정사 투영하여 영상을 제작하였다. 네 번째 단계에서는 정사 투영된 영상에서 각각의 객체의 외곽선을 추출하고 외곽선의 넓이와 넓이, 길이 비율을 이용하여 건물 불인정 영역을 제거하였다. 마지막 단계에서는 건물의 지표면 높이와 건물의 높이를 이용하여 건물의 외곽점을 구성하고 3D 건물 모델을 생성하였다. 제안한 방법을 검증하기 위하여 무인항공기 영상을 이용해 제작된 포인트 클라우드를 사용하였으며, 실험을 통해 제안 기법을 통해 무인항공기 기반 포인트 클라우드에서 자동으로 건물의 3D 모델이 생성 가능함을 확인하였다.

KCI등재

9LTE 원격관제를 통한 UAV의 비가시권 데이터 취득방안

저자 : 정호현 ( Hohyun Jeong ) , 이재희 ( Jaehee Lee ) , 박성진 ( Seongjin Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 987-997 (11 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

최근 무인항공기(UAV)의 발전과 관심이 높아지면서 UAV의 수요가 급증하고 있다. 전통적인 방식의 인공위성 및 항공영상에 비해 적은 운용비용으로 효과적인 자료 취득이 가능하여 다양한 연구(환경, 지리정보, 해양관측, 원격탐사)에 활용되고 있다. 다만, 배터리 용량 및 관제시스템과 기체의 거리 제한에 따라 전통적인 원격탐사 방법인 위성과 항공기를 이용한 방법에 비해 좁은 면적만을 획득한다는 단점이 있다. 하지만 원거리 원격관제가 가능하다면 원격탐사 분야에서의 UAV의 활용 가능성은 더 높아질 수 있으며 이에 UAV와 관제 시스템의 거리에 상관없이 관제할 수 있는 통신 네트워크 시스템이 필요하다. 전통적인 방식의 무선장치(RF 2.4 GHz, 915 MHz, 433 MHz)로 UAV와 Ground Control System(GCS)가 송수신 할 수 있는 거리는 약 2 km 내외로 제한적이다. 하지만 구축되어 있는 Long-Term Evolution(LTE) 통신망 기반의 제어방식을 적용하면 Radio Frequency(RF) 통신망의 단점을 보완할 수 있어 기존 산업과 융합하여 보다 큰 효과를 이룰 수 있다. 본 연구에서는 LTE 통신방식을 통해 GCS 기준 최대 직선거리 6.1 km, 촬영 면적 2.2 km2, 총 비행 거리 41.75 km의 비행을 수행하였다. 또한, LTE 통신의 무선 기지국 현황을 통해 통신 두절 가능성에 대해서도 분석하였다.

KCI등재

10Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구

저자 : 전현균 ( Hyungyun Jeon ) , 김준우 ( Junwoo Kim ) , 수레시크리쉬난 ( Suresh Krishnan Palanisamy Vadivel ) , 김덕진 ( Duk-jin Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 35권 6호 발행 연도 : 2019 페이지 : pp. 999-1009 (11 pages)

다운로드

(기관인증 필요)

초록보기

북극항로의 개척 가능성과 정확한 기후 예측 모델의 필요성에 의해 북극해 고해상도 해빙 지도의 중요성이 증가하고 있다. 그러나 기존의 북극 해빙 지도는 제작에 사용된 위성 영상 취득 센서의 특성에 따른 데이터의 취득과 공간해상도 등에서 그 활용도가 제한된다. 본 연구에서는 Sentinel-1 A/B SAR 위성자료로부터 고해상도 해빙 지도를 생성하기 위한 딥러닝 기반의 해빙 분류 알고리즘을 연구하였다. 북극해 Ice Chart를 기반으로 전문가 판독에 의해 Open Water, First Year Ice, Multi Year Ice의 세 클래스로 구성된 훈련자료를 구축하였으며, Convolutional Neural Network 기반의 두 가지 딥러닝 모델(Simple CNN, Resnet50)과 입사각 및 thermal noise가 보정된 HV 밴드를 포함하는 다섯 가지 입력 밴드 조합을 이용하여 총 10가지 케이스의 해빙 분류를 실시하였다. 이 케이스들에 대하여 Ground Truth Point를 사용하여 정확도를 비교하고, 가장 높은 정확도가 나온 케이스에 대해 confusion matrix 및 Cohen의 kappa 분석을 실시하였다. 또한 전통적으로 분류를 위해 많이 활용되어 온 Maximum Likelihood Classifier 기법을 이용한 분류결과에 대해서도 같은 비교를 하였다. 그 결과 Convolution 층 2개, Max Pooling 층 2개를 가진 구조의 Convolutional Neural Network에 [HV, 입사각] 밴드를 넣은 딥러닝 알고리즘의 분류 결과가 96.66%의 가장 높은 분류 정확도를 보였으며, Cohen의 kappa 계수는 0.9499로 나타나 딥러닝에 의한 해빙 분류는 비교적 높은 분류 결과를 보였다. 또한 모든 딥러닝 케이스는 Maximum Likelihood Classifier 기법에 비해 높은 분류 정확도를 보였다.

발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기