논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> 확률론적 모델을 이용한 산사태 취약성 지도 분석: 한국 사천면과 주문진읍을 중심으로

KCI등재

확률론적 모델을 이용한 산사태 취약성 지도 분석: 한국 사천면과 주문진읍을 중심으로

Landslide Susceptibility Apping and Comparison Using Probabilistic Models: A Case Study of Sacheon, Jumunzin Area, Korea

박성재 ( Sung-jae Park ) , Prima Riza Kadavi , 이창욱 ( Chang-wook Lee )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 34권5호
  • : 연속간행물
  • : 2018년 10월
  • : 721-738(18pages)
대한원격탐사학회지

DOI


목차

1. 서 론
2. Data
3. 연구방법
4. 연구결과
5. 결 론
사 사
References

키워드 보기


초록 보기

이 연구의 목적은 확률모델의 2가지 방법인 Frequency Ratio(FR), Evidential Belief Functions(EBF) 모델을 사용하여 산사태 취약성을 작성하고 강릉시 사천면과 주문진읍에서의 결과 비교를 통해 각 지역에 적합한 모델을 선정하는 것이다. 사천면에서 762개, 주문진읍에서 548개의 산사태 위치를 항공 사진의 해석을 기반으로 작성되었다. 각각의 산사태 지점 중 절반을 모델링을 위해 무작위로 선택하였고 남은 산사태 지점은 검증 목적으로 사용하였다. 지형 요소, 수문 요소, 산림입지토양도(1:5,000), 임상도(1:5,000), 지질도(1:25,000)와 같은 5가지 범주로 분류된 20가지의 산사태 유발 요소가 연구에서 산사태 취약성 작성을 위해 고려되었다. 산사태 발생과 산사태 유발 요소 사이의 관계는 FR, EBF 모델을 사용하여 분석되었다. 그 후, 2 가지 모델을 AUC(curve under area) 방법을 사용하여 검증하였다. 검증 결과에 따르면 주문진읍에서 FR모델(AUC = 81.2%)이 EBF 모델(AUC = 78.9%)에 비해 정확도가 높았다. 사천면 지역에서는 EBF 모델(AUC = 83.6%)이 FR모델(AUC =81.6%)보다 정확도가 높게 나타났다. 검증 결과 FR 모델과 EBF 모델은 정확도 80% 내외로 높은 정확도를 가지고 있음을 나타낸다.
The purpose of this study is to create landslide vulnerability using frequency ratio (FR) and evidential belief functions (EBF) model which are two methods of probability model and to select appropriate model for each region through comparison of results in Sacheon-myeon and Jumunjin-eup of Gangneung. 762 locations in Sacheon-myeon and 548 landscapes in Jeonju-eup were constructed based on the interpretation of aerial photographs. Half of each landslide point was randomly selected for modeling and remaining landslides were used for verification purposes. Twenty landslide-inducing factors classified into five categories such as topographic elements, hydrological elements, soil maps (1:5,000), forest maps (1:5,000), and geological maps (1:25,000) were considered for the preparation of landslide vulnerability in the study. The relationship between landslide occurrence and landslide inducing factors was analyzed using FR and EBF models. The two models were then verified using the AUC (curve under area) method. According to the results of verification, the FR model (AUC = 81.2%) was more accurate than the EBF model (AUC = 78.9%) at Jeonjun-eup. In the Sacheon-myeon, the EBF model (AUC = 83.6%) was more accurate than the FR model (AUC = 81.6%). Verification results show that FR model and EBF model have high accuracy with accuracy of around 80%.

UCI(KEPA)

I410-ECN-0102-2019-400-001363618

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1774


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권4호(2022년 08월) 수록논문
최근 권호 논문
| | | |

KCI등재

1Cloud Removal Using Gaussian Process Regression for Optical Image Reconstruction

저자 : Soyeon Park , No-wook Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 327-341 (15 pages)

다운로드

(기관인증 필요)

초록보기

Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.

KCI등재

2Derivation of Surface Temperature from KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model

저자 : Yongseung Kim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 343-353 (11 pages)

다운로드

(기관인증 필요)

초록보기

An attempt to derive the surface temperature from the Korea Multi-purpose Satellite (KOMPSAT)-3A mid-wave infrared (MWIR) data acquired over the southern California on Nov. 14, 2015 has been made using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model. Since after the successful launch on March 25, 2015, the KOMPSAT-3A spacecraft and its two payload instruments ― the high-resolution multispectral optical sensor and the scanner infrared imaging system (SIIS) ― continue to operate properly. SIIS uses the MWIR spectral band of 3.3-5.2 μm for data acquisition. As input data for the realistic simulation of the KOMPSAT-3A SIIS imaging conditions in the MODTRAN model, we used the National Centers for Environmental Prediction (NCEP) atmospheric profiles, the KOMPSAT-3A sensor response function, the solar and line-of-sight geometry, and the University of Wisconsin emissivity database. The land cover type of the study area includes water, sand, and agricultural (vegetated) land located in the southern California. Results of surface temperature showed the reasonable geographical pattern over water, sand, and agricultural land. It is however worthwhile to note that the surface temperature pattern does not resemble the top-of-atmosphere (TOA) radiance counterpart. This is because MWIR TOA radiances consist of both shortwave (0.2-5 μm) and longwave (5-50 μm) components and the surface temperature depends solely upon the surface emitted radiance of longwave components. We found in our case that the shortwave surface reflection primarily causes the difference of geographical pattern between surface temperature and TOA radiance. Validation of the surface temperature for this study is practically difficult to perform due to the lack of ground truth data. We therefore made simple comparisons with two datasets over Salton Sea: National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) field data and Salton Sea data. The current estimate differs with these datasets by 2.2 K and 1.4 K, respectively, though it seems not possible to quantify factors causing such differences.

KCI등재

3Recent Trends of Abnormal Sea Surface Temperature Occurrence Analyzed from Buoy and Satellite Data in Waters around Korean Peninsula

저자 : Won-jun Choi , Chan-su Yang

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 355-364 (10 pages)

다운로드

(기관인증 필요)

초록보기

In this study a tendency of abnormal sea surface temperature (SST) occurrence in the seas around South Korea is analyzed from daily SST data from satellite and 14 buoys from August 2020 to July 2021. As thresholds 28℃ and 4℃ are used to determine marine heatwaves (MHWs) and abnormal low water temperature (ALWT), respectively, because those values are adopted by the National Institute of Fisheries Science for the breaking news of abnormal temperature. In order to calculate frequency of abnormal SST occurrence spatially by using satellite SST, research area was divided into six areas of coast and three open seas. ALWT dominantly appeared over a wide area (7,745 km2) in Gyeonggi Bay for total 94 days and it was also confirmed from buoy temperature showing an occurrence number of 47 days. MHWs tended to be high in frequency in the coastal areas of Chungcheongdo and Jeollabukdo and the south coastal areas while in case of buoy temperature Jupo was the place of high frequency (32 days). This difference was supposed to be due to the low accuracy of satellite SST at the coasts. MHWs are also dominant in offshore waters around Korean Peninsula. Although detecting abnormal SST by using satellite SST has advantage of understanding occurrence from a spatial point of view, we also need to perform detection using buoys to increase detection accuracy along the coast.

KCI등재

4Activity of the Fushun West Open-pit Mine in China Observed by Sentinel-1 InSAR Coherence Images

저자 : Da-woon Jung , Hoonyol Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 365-374 (10 pages)

다운로드

(기관인증 필요)

초록보기

Mining activity causes environmental pollution and geological hazards such as ground subsidence or landslide of which continuous monitoring is necessary. In this study, the activity on the Fushun West Open- Pit Mine (FWOPM), one of the largest open-pit coal mines in Asia located in Fushun, Liaoning Province, China, was analyzed by using a time-series Sentinel-1 InSAR coherence dataset. By using the difference between the two Digital Elevation Models (DEM) of the area, it was possible to confirm that there was a stockpiling activity in the western area of the FWOPM while excavation activity in the eastern area. By using RGB composite images using the yearly-averaged InSAR coherence images, the activity of the mine was confirmed by period, which was confirmed by Google Earth optical images. As a result, it was possible to confirm three landslides and the related activities on the northwest slope and the dumping activity on the west slope of FWOPM.

KCI등재

5Performance of Random Forest Classifier for Flood Mapping Using Sentinel-1 SAR Images

저자 : Yongjae Chu , Hoonyol Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 375-386 (12 pages)

다운로드

(기관인증 필요)

초록보기

The city of Khartoum, the capital of Sudan, was heavily damaged by the flood of the Nile in 2020. Classification using satellite images can define the damaged area and help emergency response. As Synthetic Aperture Radar (SAR) uses microwave that can penetrate cloud, it is suitable to use in the flood study. In this study, Random Forest classifier, one of the supervised classification algorithms, was applied to the flood event in Khartoum with various sizes of the training dataset and number of images using Sentinel-1 SAR. To create a training dataset, we used unsupervised classification and visual inspection. Firstly, Random Forest was performed by reducing the size of each class of the training dataset, but no notable difference was found. Next, we performed Random Forest with various number of images. Accuracy became better as the number of images increased, but converged to a maximum value when the dataset covers the duration from flood to the completion of drainage.

KCI등재

6Upwelling Proxy Improvement and Validation Using Satellite Remote Sensing along Southwest of the East Sea: Case Study in 2019

저자 : Deoksu Kim , Dukwon Bae , Jang-geun Choi , Young-heon Jo

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 387-394 (8 pages)

다운로드

(기관인증 필요)

초록보기

Coastal upwelling is a significantly imperative process for understanding the interactions between physical and ecological processes and has been investigated incessantly. In this study, we explored the upwelling index, specifically upwelling age (UA). UA enabled us to observe the initiating, sustaining, and decaying upwelling processes. Although the sensitivity of many other geophysical parameters to estimate UA has been investigated, the wind direction has not been evaluated. Thus, we assessed the appropriate wind direction for the UA and obtained efficient upwelling signals from the four coastal stations. Furthermore, we applied the UA and compared it with the satellite sea level anomaly, sea surface temperature, and chlorophyll-a changes to validate how UA depicts their spatial extents. Thus, UA can predict the timing of coastal upwelling events using predicted geophysical parameters.

KCI등재

7A Study on the Land Cover Classification and Cross Validation of AI-based Aerial Photograph

저자 : Seong-hyeok Lee , Soojeong Myeong , Donghyeon Yoon , Moung-jin Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 395-409 (15 pages)

다운로드

(기관인증 필요)

초록보기

The purpose of this study is to evaluate the classification performance and applicability when land cover datasets constructed for AI training are cross validation to other areas. For study areas, Gyeongsang-do and Jeolla-do in South Korea were selected as cross validation areas, and training datasets were obtained from AI-Hub. The obtained datasets were applied to the U-Net algorithm, a semantic segmentation algorithm, for each region, and the accuracy was evaluated by applying them to the same and other test areas. There was a difference of about 13-15% in overall classification accuracy between the same and other areas. For rice field, fields and buildings, higher accuracy was shown in the Jeolla-do test areas. For roads, higher accuracy was shown in the Gyeongsang-do test areas. In terms of the difference in accuracy by weight, the result of applying the weights of Gyeongsang-do showed high accuracy for forests, while that of applying the weights of Jeolla-do showed high accuracy for dry fields. The result of land cover classification, it was found that there is a difference in classification performance of existing datasets depending on area. When constructing land cover map for AI training, it is expected that higher quality datasets can be constructed by reflecting the characteristics of various areas. This study is highly scalable from two perspectives. First, it is to apply satellite images to AI study and to the field of land cover. Second, it is expanded based on satellite images and it is possible to use a large scale area and difficult to access.

KCI등재

8An Analysis of Land Use Changes in DPR Korea Using Land Cover Maps from the Late 1980s to the Late 2010s

저자 : Soojeong Myeong

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 411-419 (9 pages)

다운로드

(기관인증 필요)

초록보기

DPR Korea has been creating cropland across the country due to its chronic food shortage. Cropland was about 17.4% at the end of the 1980s, but it increased steadily to 19.6% at the end of the 1990s, 24.8% at the end of the first decade of 2000s, and 25.4% at the end of the 2010s. On the other hand, the forest land declined from about 74.8% in the late 1980s to 69.5% in the late 2010s. Urbanization is also progressing, increasing from about 1.15% at the end of the 1980s to 1.68% at the end of the 2010s. Most of the deforestation that occurred in DPR Korea was caused by conversion to cropland. These characteristics of land cover changes in DPR Korea provide useful information and implications for international and inter-Korean cooperation for DPR Korea.

KCI등재

9Satellite-based Assessment of Ecosystem Services Considering Social Demand for Reduction of Fine Particulate Matter in Seoul

저자 : Chul-hee Lim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 421-434 (14 pages)

다운로드

(기관인증 필요)

초록보기

Fine particulate matter (PM2.5) has been the biggest environmental problem in Korea since the 2010s. The present study considers the value of urban forests and green infrastructure as an ecosystem service (ES) concept for PM2.5 reduction based on satellite and spatial data, with a focus on Seoul, Korea. A method for the spatial ES assessment that considers social demand variables such as population and land price is suggested. First, an ES assessment based on natural environment information confirms that, while the vitality of vegetation is relatively low, the ES is high in the city center and residential areas, where the concentration of PM2.5 is high. Then, the ES assessment considering social demand (i.e., the ESS) confirms the existence of higher PM2.5 values in residential areas with high population density, and in main downtown areas. This is because the ESS of urban green infrastructure is high in areas with high land prices, high population density, and above-average PM2.5 concentrations. Further, when a future green infrastructure improvement scenario that considers the urban forest management plan is applied, the area of very high ESS is increased by 74% when the vegetation greenness of the green infrastructure in the residential area is increased by only 20%. This result suggests that green infrastructure and urban forests in the residential area should be continuously expanded and managed in order to maximize the PM2.5 reduction ES.

KCI등재

10Random Forest Classifier-based Ship Type Prediction with Limited Ship Information of AIS and V-Pass

저자 : Ho-kun Jeon , Jae Rim Han

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 435-446 (12 pages)

다운로드

(기관인증 필요)

초록보기

Identifying ship types is an important process to prevent illegal activities on territorial waters and assess marine traffic of Vessel Traffic Services Officer (VTSO). However, the Terrestrial Automatic Identification System (T-AIS) collected at the ground station has over 50% of vessels that do not contain the ship type information. Therefore, this study proposes a method of identifying ship types through the Random Forest Classifier (RFC) from dynamic and static data of AIS and V-Pass for one year and the Ulsan waters. With the hypothesis that six features, the speed, course, length, breadth, time, and location, enable to estimate of the ship type, four classification models were generated depending on length or breadth information since 81.9% of ships fully contain the two information. The accuracy were average 96.4% and 77.4% in the presence and absence of size information. The result shows that the proposed method is adaptable to identifying ship types.

1
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1무인기 기반 RGB 영상을 이용한 동계작물 바이오매스 평가 모델 개발

저자 : 나상일 ( Sang-il Na ) , 박찬원 ( Chan-won Park ) , 소규호 ( Kyu-ho So ) , 안호용 ( Ho-yong Ahn ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 709-720 (12 pages)

다운로드

(기관인증 필요)

초록보기

작황 모니터링에서 바이오매스의 정확한 평가를 위해서는 정확하고 신속한 작물 생육 상황 등 현장자료의 확보가 필수적이다. 또한, 바이오매스의 평가는 작황 모니터링 및 수확량 예측에 활용된다. 무인기 영상은 작물의 성장에 따라 빠르게 수집할 수 있기 때문에 정밀농업에서 포장내 공간변이 파악 및 분석에 사용되고 있다. 본 연구는 원격탐사 기술을 이용한 동계작물 바이오매스 평가 방법 개발을 위하여 식생지수(ExG)에 의한 식생 피복률(VF)과 작물 표고 모형(CSM) 기반의 초고(PH)를 이용하여 보리와 밀을 대상으로 바이오매스 평가 모델을 개발하는 것을 목적으로 하였다. 식생 피복률, 초고 및 상호작용 항을 독립변수로 하여 다중 선형 회귀 모델을 구축한 결과, 5가지 품종의 결정계수는 0.84~0.99로 나타났으며, 보리와 밀의 결정계수 및 평균 제곱근 오차는 각각 0.91, 0.90 및 102.09, 110.87 g/㎡으로 나타났다. 따라서 무인기 영상을 활용한 동계작물의 바이오매스 평가 및 작황 모니터링이 가능한 것으로 판단된다.

KCI등재

2확률론적 모델을 이용한 산사태 취약성 지도 분석: 한국 사천면과 주문진읍을 중심으로

저자 : 박성재 ( Sung-jae Park ) , Prima Riza Kadavi , 이창욱 ( Chang-wook Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 721-738 (18 pages)

다운로드

(기관인증 필요)

초록보기

이 연구의 목적은 확률모델의 2가지 방법인 Frequency Ratio(FR), Evidential Belief Functions(EBF) 모델을 사용하여 산사태 취약성을 작성하고 강릉시 사천면과 주문진읍에서의 결과 비교를 통해 각 지역에 적합한 모델을 선정하는 것이다. 사천면에서 762개, 주문진읍에서 548개의 산사태 위치를 항공 사진의 해석을 기반으로 작성되었다. 각각의 산사태 지점 중 절반을 모델링을 위해 무작위로 선택하였고 남은 산사태 지점은 검증 목적으로 사용하였다. 지형 요소, 수문 요소, 산림입지토양도(1:5,000), 임상도(1:5,000), 지질도(1:25,000)와 같은 5가지 범주로 분류된 20가지의 산사태 유발 요소가 연구에서 산사태 취약성 작성을 위해 고려되었다. 산사태 발생과 산사태 유발 요소 사이의 관계는 FR, EBF 모델을 사용하여 분석되었다. 그 후, 2 가지 모델을 AUC(curve under area) 방법을 사용하여 검증하였다. 검증 결과에 따르면 주문진읍에서 FR모델(AUC = 81.2%)이 EBF 모델(AUC = 78.9%)에 비해 정확도가 높았다. 사천면 지역에서는 EBF 모델(AUC = 83.6%)이 FR모델(AUC =81.6%)보다 정확도가 높게 나타났다. 검증 결과 FR 모델과 EBF 모델은 정확도 80% 내외로 높은 정확도를 가지고 있음을 나타낸다.

KCI등재

3고해상도 광학영상과 SAR 영상 간 정합 기법

저자 : 전형주 ( Hyeongju Jeon ) , 김용일 ( Yongil Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 739-747 (9 pages)

다운로드

(기관인증 필요)

초록보기

다중센서 위성영상 간 통합 분석 및 융합과 관련된 연구가 활발히 진행되고 있다. 이를 위해서는 다중센서 영상 간 정합이 선행되어야 한다. 대표적인 정합 기법으로는 SIFT (Scale Invariant Feature Transform)와 같은 알고리즘이 존재한다. 그러나, 광학영상과 SAR (Synthetic Aperture Radar)영상은 취득 시 센서 자세와 방사 특성의 상이함으로 영상 간 분광적인 특성이 비선형성을 이뤄 기존 기법을 적용하기에 어렵다. 이를 해결하기 위해, 본 연구에서는 특징기반 정합기법인 SAR-SIFT (Scale Invariant Feature Transform)와 형상 서술자 벡터 DLSS (Dense Local Self-Similarity)를 결합하여 개선된 영상 정합기법을 제안하였다. 본 실험 지역은 대전 일대에서 촬영된 KOMPSAT-2 영상과 Cosmo-SkyMed 영상을 이용하여 실험하였다. 제안 기법을 비교평가하기 위해 특징점 및 정합쌍 추출에 대해 대표적인 기존 기법인 SIFT와 SAR-SIFT를 이용하였다. 실험 결과를 통해 제안 기법은 기존 기법들과 다르게 두 실험 지역에서 참정합쌍을 추출하였다. 또한 추출된 정합쌍을 통한 정합 결과 정성적으로 우수하게 정합되었으며, 정량적으로도 두 실험 지역에서 각각 RMSE (Root Mean Square Error) 1.66 m, 2.65 m로 우수한 정합 결과를 보였다.

KCI등재

4GIS 자료를 활용한 도시 재개발 주변 지역의 일조 환경 분석

저자 : 강정은 ( Jung-eun Kang ) , 박수진 ( Soo-jin Park ) , 김재진 ( Jae-jin Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 749-762 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 고층 건물 신축에 의한 주변 지역의 일조 환경 변화를 계절별로 분석하였다. 지리정보시스템(geographic information system, GIS) 자료를 이용하여 부산광역시 부경대학교 일대를 중심으로 지형과 건물을 구축하고, 고층 건물 건설 전과 후에 대해 계절별로 일조 모델을 수행하였다. 고층 건물 단지 건설 전에도 대상 지역의 남동쪽에 위치한 아파트 단지와 남쪽에 위치한 봉오리산의 영향을 받아 일조 차단 영역이 넓게 나타났다. 고층 건물 단지 건설에 의해 주변 지역의 일조 시간이 감소하였고, 일출과 일몰 시간대에는 일조 차단 면적이 증가하였다. 일출 1시간 후의 경우에는 춘분(1.60%), 추분(1.58%), 하지(1.50%), 동지(1.36%) 순으로 일조 차단 면적이 증가하였다. 부경대학교 동쪽(남쪽)에 건설된 고층 건물 단지는 일출(일몰)시 서쪽(동쪽)으로 1,000m(750 m) 이상의 지점까지 일조가 차단되었다. 특히, 부경대학교 내부에서는 춘분, 하지, 추분, 동지에 각각 46.61%, 22.75%, 58.56%, 11.31%의 일조 시간이 감소하였다. 부경대학교 기숙사 건물에 대해 겨울철 1주일 동안 일조 시간을 조사한 결과, 남쪽 고층 건물 단지 건설은 기숙사 건물 서쪽(남쪽) 벽면의 일조 면적을 30.91% (49.45%) 정도 감소시켰다.

KCI등재

5GIS와 CFD 모델을 활용한 건설 현장 방풍벽 설치가 비산 먼지 확산에 미치는 영향 연구

저자 : 김동주 ( Dong-ju Kim ) , 왕장운 ( Jang-woon Wang ) , 박수진 ( Soo-jin Park ) , 김재진 ( Jae-jin Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 763-775 (13 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 지리정보시스템(GIS)자료와 전산유체역학(CFD) 모델을 사용하여 방풍벽이 건물 밀집 지역에 위치한 공사 지역에서 발생하는 대기오염물질의 확산에 미치는 영향에 대해 분석하였다. 부산 ASOS에서 10년 동안 관측된 풍속을 평균하여 기준 고도(지상 10 m)에서의 유입류로 사용하였다. 수치 실험은 방풍벽 건설 전과 5 m 및 10 m 높이의 방풍벽을 건설한 후에 대해 16 방위 풍향을 유입류로 진행하였고, 부산 ASOS에서 높은 빈도를 나타낸 북동풍과 남남서풍에 대한 상세 흐름을 분석하였다. 북동풍에서는 북동쪽에서 불어오는 흐름에 의해 비산 먼지가 확산되어 공사 지역 내부에 위치한 감천초등학교에서 대기오염물질 농도가 높게 나타났다. 5 m 높이의 방풍벽을 설치했을 때는 방풍벽 설치 전에 비해 풍속이 조금 감소했고 비산 먼지의 확산이 줄었다. 10 m 높이의 방풍벽을 설치한 경우, 초등학교에서의 평균 대기오염물질 농도는 37% 감소하였다. 남남서풍 유입류에서는 지형과 건물의 영향으로 공사 지역에서 복잡한 흐름 패턴이 형성되었다. 남쪽 공사 지역에서는 비산 먼지가 정체되어 농도가 높게 나타난 반면, 초등학교는 북풍의 흐름에 의해 대기오염물질 농도가 높게 나타났다. 방풍벽 건설 후에는 공사 지역 내부에서 풍속이 감소하면서 공사장 내부 농도는 높아졌지만, 초등학교에서의 농도는 감소했다.

KCI등재

6Guided Filter를 이용한 교차융합영상 기반 KOMPSAT-3 위성영상의 무감독변화탐지

저자 : 최재완 ( Jaewan Choi ) , 박홍련 ( Honglyun Park ) , 김동학 ( Donghak Kim ) , 최석근 ( Seokkeun Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 777-786 (10 pages)

다운로드

(기관인증 필요)

초록보기

GF(Guided Filtering)는 영상에 존재하는 에지 정보를 보존하면서 잡음을 효과적으로 제거하기 위한 대표적인 영상처리 기법이다. 본 연구에서는 GF를 이용하여 다시기 KOMPSAT-3 위성영상에 대한 무감독 변화 탐지 기법을 수행하고, 이에 대한 성능을 평가하고자 하였다. GF를 변화탐지에 활용하기 위하여, GF를 기반으로 교차융합영상을 생성하였으며, 생성된 교차융합영상에 CVA(Change Vector Analysis) 기법을 적용하여 변화 지역을 추정하고자 하였다. KOMPSAT-3 위성영상을 이용한 실험결과, 본 연구에서 제안한 기법이 기존의 영상융합 기법을 기반으로 하는 CVA 결과들과 비교하여 효과적으로 변화지역을 탐지하는 데에 활용할 수 있음을 확인하였다.

KCI등재

7대규모 홍수 매핑을 위한 저해상도 광학위성영상의 활용 방법

저자 : 박연연 ( Yanyan Piao ) , 이화선 ( Hwa-seon Lee ) , 김경탁 ( Kyung-tak Kim ) , 이규성 ( Kyu-sung Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 787-799 (13 pages)

다운로드

(기관인증 필요)

초록보기

대규모 홍수 발생 시 적기에 침수지의 공간적 분포와 변화를 모니터링하기 위한 정확하고 효율적인 매핑 수단이 필요하다. 본 연구에서는 높은 시간해상도로 동일 지역을 하루에 여러 번 관측이 가능한 저해상도 광학위성영상을 이용하여 대규모 홍수 범람으로 인한 침수지를 탐지하는 방법을 제시하고자 하였다. 2010년 1월 모로코 세부강 유역에서 발생한 대규모 홍수로 인한 침수지를 탐지하기 위하여 MODIS 일별 표면반사율 영상을 사용하였다. 영상에서 나타나는 침수지의 다양한 분광특성을 분석하여 침수지의 유형이 순수한 물표면과 물과 식물이 혼재된 형태가 함께 분포하고 있었다. 침수지 탐지는 분광특성에 따라 선정된 밴드의 반사율 영상에 직접 임계값을 적용하는 방법과 물 관련 분광지수에 임계값을 적용하는 방법을 비교하였다. 침수지 탐지 결과의 정확도 검증은 TM 영상에서 판독된 부분 지역의 침수지 지도와 비교하였다. NDWI를 제외한 나머지 방법에서 90% 이상의 높은 정확도를 얻었다. 모든 침수지 탐지 방법에서 SWIR밴드와 적색광밴드가 가장 중요하며, 2개의 밴드에 직접 임계값을 적용하는 단순한 방법으로도 정확하고 효율적인 침수지 탐지가 가능했다. 기존의 NIR밴드는 침수지 탐지에 있어서 큰 역할을 하지 못했지만, 식물이 혼재된 침수지의 유형을 구분하는데 유용했다.

KCI등재

8OpenSARShip DB를 이용한 선박식별 성능 분석

저자 : 이승재 ( Seung-jae Lee ) , 채태병 ( Tae-byeong Chae ) , 김경태 ( Kyung-tae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 801-810 (10 pages)

다운로드

(기관인증 필요)

초록보기

위성 SAR 영상을 이용한 선박 모니터링은 선박탐지, 선박변별, 선박식별의 세 단계로 분류할 수 있다. 이 중 선박탐지 및 변별에 대해서는 세계적으로 많은 연구가 이루어졌으나, 선박식별에 대해서는 소수의 연구들만이 존재한다. 따라서 향후 고성능의 선박 모니터링 시스템을 구축하기 위해서는 많은 선박식별 연구가 필요한 상황이다. 선박식별 연구를 수행하기 위해서는 먼저 여러 기종의 선박에 대한 위성 SAR 영상과 이에 대응하는 선박 기종 정보를 모두 획득하여 데이터베이스(database: DB)를 구축하는 것이 중요하다. 항공 SAR 영상을 이용한 표적식별의 경우, 지상표적에 대한 미국 moving and stationary target acquisition and recognition (MSTAR) DB를 이용하여 많은 연구들이 수행되었지만, SAR 위성을 이용한 선박식별의 경우, 아직까지 공개적으로 이용 가능한 DB가 없었다. 이에 최근 중국 Shanghai Key Laboratory에서는 유럽우주국(European Space Agency: ESA)에서 운용하는 Sentinel-1 영상과 자동인식시스템(automatic identification system: AIS)으로부터 획득한 선박정보를 결합하여 선박식별 연구용 DB인 OpenSARShip DB를 구축하였다. 이에 먼저 항공 SAR 영상을 이용한 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 위성 SAR DB에 적용하여 OpenSARShip DB의 활용성을 조사해볼 필요가 있다. 따라서 본 논문에서는 기존 항공 SAR 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 OpenSARShip DB에 적용하여 선박식별을 수행한 후, 그 성능을 분석하여 OpenSARShip DB의 활용성을 조사한다.

KCI등재

9작물분류에서 기계학습 및 딥러닝 알고리즘의 분류 성능 평가: 하이퍼파라미터와 훈련자료 크기의 영향 분석

저자 : 김예슬 ( Yeseul Kim ) , 곽근호 ( Geun-ho Kwak ) , 이경도 ( Kyung-do Lee ) , 나상일 ( Sang-il Na ) , 박찬원 ( Chan-won Park ) , 박노욱 ( No-wook Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 811-827 (17 pages)

다운로드

(기관인증 필요)

초록보기

본 연구의 목적은 다중시기 원격탐사 자료를 이용한 작물분류에서 기계학습 알고리즘과 딥러닝 알고리즘의 비교에 있다. 이를 위해 전라남도 해남군과 미국 Illinois 주의 작물 재배지를 대상으로 기계학습 알고리즘과 딥러닝 알고리즘에 대해 (1) 하이퍼파라미터와 (2) 훈련자료의 크기에 따른 영향을 비교 분석하였다. 비교 실험에는 기계학습 알고리즘으로 support vector machine(SVM)을 적용하고 딥러닝 알고리즘으로 convolutional neural network(CNN)를 적용하였다. 특히 CNN에서 2차원의 공간정보를 고려하는 2D-CNN과 시간차원을 확장한 구조의 3D-CNN을 적용하였다. 비교 실험 결과, 다양한 하이퍼파라미터를 고려해야 하는 CNN의 경우 SVM과 다르게 두 지역에서 정의된 하이퍼파라미터 값이 유사한 것으로 나타났다. 이러한 결과를 바탕으로 모델 최적화에 많은 시간이 소요되지만 최적화된 CNN 모델을 다른 지역으로 확장할 수 있는 전이학습의 적용 가능성이 높을 것으로 판단된다. 다음 훈련자료 크기에 따른 비교 실험 결과, SVM 보다 CNN에서 훈련자료 크기의 영향이 큰 것으로 나타났는데 특히 다양한 공간특성을 갖는 Illinois 주에서 이러한 경향이 두드러지게 나타났다. 또한 Illinois 주에서 3D-CNN의 분류 성능이 저하되는 것으로 나타났는데, 이는 모델 복잡도가 증가하면서 과적합의 영향이 발생한 것으로 판단된다. 즉 모델의 훈련 정확도는 높지만 다양한 공간특성이나 입력 자료의 잡음 효과 등으로 오히려 분류 성능이 저하된 것으로 나타났다. 이러한 결과는 대상 지역의 공간특성을 고려해 적절한 분류 알고리즘을 선택해야 하는 것을 의미한다. 또한 CNN에서 특히, 3D-CNN에서 일정 수준의 분류 성능을 담보하기 위해 다량의 훈련자료 수집이 필요하다는 것을 의미한다.

KCI등재

10국내 작황 모니터링을 위한 무인항공기 적용방안

저자 : 나상일 ( Sang-il Na ) , 박찬원 ( Chan-won Park ) , 소규호 ( Kyu-ho So ) , 안호용 ( Ho-yong Ahn ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 829-846 (18 pages)

다운로드

(기관인증 필요)

초록보기

작황 모니터링은 농민들에게 최적의 작물 생산을 위한 농작업 관리 전략을 수립하는데 유용한 정보를 제공할 수 있다. 그러나 시료 채취에 의한 분석 등에 한정된 기존의 현장 모니터링 방법은 많은 시간과 노동력이 필요하다. 무인항공기는 고해상도 이미지를 신속하고 정기적으로 취득할 수 있는 장점이 있기 때문에 재배면적, 생육인자, 생육이상 및 생산량 추정 등과 같은 작황 모니터링 분야에 효과적으로 활용될 수 있다. 또한, 위성과 비교하여 비행 고도가 낮아 흐린 날씨에서도 높은 화질의 영상을 수집할 수 있다. 본 연구는 작황 모니터링 분야에서의 무인항공기 활용 가능성을 검토하고 무인항공기 기반의 작황 정보 생산을 위한 적용방안을 제시하고자 하였다.

1
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기