논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> 확률론적 모델을 이용한 산사태 취약성 지도 분석: 한국 사천면과 주문진읍을 중심으로

KCI등재

확률론적 모델을 이용한 산사태 취약성 지도 분석: 한국 사천면과 주문진읍을 중심으로

Landslide Susceptibility Apping and Comparison Using Probabilistic Models: A Case Study of Sacheon, Jumunzin Area, Korea

박성재 ( Sung-jae Park ) , Prima Riza Kadavi , 이창욱 ( Chang-wook Lee )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 34권5호
  • : 연속간행물
  • : 2018년 10월
  • : 721-738(18pages)
대한원격탐사학회지

DOI


목차

1. 서 론
2. Data
3. 연구방법
4. 연구결과
5. 결 론
사 사
References

키워드 보기


초록 보기

이 연구의 목적은 확률모델의 2가지 방법인 Frequency Ratio(FR), Evidential Belief Functions(EBF) 모델을 사용하여 산사태 취약성을 작성하고 강릉시 사천면과 주문진읍에서의 결과 비교를 통해 각 지역에 적합한 모델을 선정하는 것이다. 사천면에서 762개, 주문진읍에서 548개의 산사태 위치를 항공 사진의 해석을 기반으로 작성되었다. 각각의 산사태 지점 중 절반을 모델링을 위해 무작위로 선택하였고 남은 산사태 지점은 검증 목적으로 사용하였다. 지형 요소, 수문 요소, 산림입지토양도(1:5,000), 임상도(1:5,000), 지질도(1:25,000)와 같은 5가지 범주로 분류된 20가지의 산사태 유발 요소가 연구에서 산사태 취약성 작성을 위해 고려되었다. 산사태 발생과 산사태 유발 요소 사이의 관계는 FR, EBF 모델을 사용하여 분석되었다. 그 후, 2 가지 모델을 AUC(curve under area) 방법을 사용하여 검증하였다. 검증 결과에 따르면 주문진읍에서 FR모델(AUC = 81.2%)이 EBF 모델(AUC = 78.9%)에 비해 정확도가 높았다. 사천면 지역에서는 EBF 모델(AUC = 83.6%)이 FR모델(AUC =81.6%)보다 정확도가 높게 나타났다. 검증 결과 FR 모델과 EBF 모델은 정확도 80% 내외로 높은 정확도를 가지고 있음을 나타낸다.
The purpose of this study is to create landslide vulnerability using frequency ratio (FR) and evidential belief functions (EBF) model which are two methods of probability model and to select appropriate model for each region through comparison of results in Sacheon-myeon and Jumunjin-eup of Gangneung. 762 locations in Sacheon-myeon and 548 landscapes in Jeonju-eup were constructed based on the interpretation of aerial photographs. Half of each landslide point was randomly selected for modeling and remaining landslides were used for verification purposes. Twenty landslide-inducing factors classified into five categories such as topographic elements, hydrological elements, soil maps (1:5,000), forest maps (1:5,000), and geological maps (1:25,000) were considered for the preparation of landslide vulnerability in the study. The relationship between landslide occurrence and landslide inducing factors was analyzed using FR and EBF models. The two models were then verified using the AUC (curve under area) method. According to the results of verification, the FR model (AUC = 81.2%) was more accurate than the EBF model (AUC = 78.9%) at Jeonjun-eup. In the Sacheon-myeon, the EBF model (AUC = 83.6%) was more accurate than the FR model (AUC = 81.6%). Verification results show that FR model and EBF model have high accuracy with accuracy of around 80%.

UCI(KEPA)

I410-ECN-0102-2019-400-001363618

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2021
  • : 1640


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

37권4호(2021년 08월) 수록논문
최근 권호 논문
| | | |

KCI등재

1Analyzing the Evolution of Summer Thermal Anomalies in Busan Using Remote Sensing and Spatial Statistical Tool

저자 : Nkwain Wilfred Njungwi , Daeun Lee , Minji Kim , Cheonggil Jin , Chuluong Choi

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 665-685 (21 pages)

다운로드

(기관인증 필요)

초록보기

This study focused on the a 20-year evaluation of the dynamism of critical thermal anomalies in Busan metropolitan area prompted by unusual infrastructural development and demographic growth rate. Archived Landsat thermal data derived-LST was the major input for UTFVI and hot spot analysis (Getis-Ord Gi). Results revealed that the surface urban heat island-affected area has gradually expanded overtime from 23.32% to 32.36%; while the critical positive thermal anomalies (level-3 hotspots) have also spatially increased from 19.88% in 2000 to 23.56% in 2020, recording a net LST difference of > 5°C between the maximum level-3 hotspot and minimum level-3 coldspot each year. It is been observed that thermal conditions of Busan have gradually deteriorated with time, which is potentially inherent in the rate of urban expansion. Thus, this work serves as an eye-opener to powers that be, to think and act constructively towards a sustainable thermal conform for city dwellers.

KCI등재

2Application of High-spatial-resolution Satellite Images to Monitoring Coral Reef Habitat Changes at Weno Island Chuuk, Micronesia

저자 : Jong-kuk Choi , Joo-hyung Ryu , Jee-eun Min

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 687-698 (12 pages)

다운로드

(기관인증 필요)

초록보기

We present quantitative estimations of changes in the areal extent of coral reef habitats at Weno Island, Micronesia, using high-spatial-resolution remote sensing images and field observations. Coral reef habitat maps were generated from Kompsat-2 satellite images for September 2008 and September 2010, yielding classifications with 78.6% and 72.4% accuracy, respectively, which is a relatively high level of agreement. The difference between the number of pixels occupied by each seabed type was calculated, revealing that the areal extent of living corals decreased by 8.2 percentage points between 2008 and 2010. This result is consistent with a comparison of the seabed types determined by field observations. This study can be used as a basis for remediation planning to diminish the impact of changes in coral reefs.

KCI등재

3Analysis of Spectral Reflectance Characteristics Using Hyperspectral Sensor at Diverse Phenological Stages of Soybeans

저자 : Seung-hwan Go , Jin-ki Park , Jong-hwa Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 699-717 (19 pages)

다운로드

(기관인증 필요)

초록보기

South Korea is pushing for the advancement of crop production technology to achieve food self-sufficiency and meet the demand for safe food. A medium-sized satellite for agriculture is being launched in 2023 with the aim of collecting and providing information on agriculture, not only in Korea but also in neighboring countries. The satellite is to be equipped with various sensors, though reference data for ground information are lacking. Hyperspectral remote sensing combined with 1st derivative is an efficient tool for the identification of agricultural crops. In our study, we develop a system for hyperspectral analysis of the ground-based reflectance spectrum, which is monitored seven times during the cultivation period of three soybean crops using a PSR-2500 hyperspectral sensor. In the reflection spectrum of soybean canopy, wavelength variations correspond with stages of soybean growths. The spectral reflection characteristics of soybeans can be divided according to growth into the vegetative (V) stage and the reproductive (R) stage. As a result of the first derivative analysis of the spectral reflection characteristics, it is possible to identify the characteristics of each wavelength band. Using our developed monitoring system, we observed that the near-infrared (NIR) variation was largest during the vegetative (V1-V3) stage, followed by a similar variation pattern in the order of red-edge and visible. In the reproductive stage (R1-R8), the effect of the shape and color of the soybean leaf was reflected, and the pattern is different from that in the vegetative (V) stage. At the R1 to R6 stages, the variation in NIR was the largest, and red-edge and green showed similar variation patterns, but red showed little change. In particular, the reflectance characteristics of the R1 stage provides information that could help us distinguish between the three varieties of soybean that were studied. In the R7-R8 stage, close to the harvest period, the red-edge and NIR variation patterns and the visible variation patterns changed. These results are interpreted as a result of the large effects of pigments such as chlorophyll for each of the three soybean varieties, as well as from the formation and color of the leaf and stem. The results obtained in this study provide useful information that helps us to determine the wavelength width and range of the optimal band for monitoring and acquiring vegetation information on crops using satellites and unmanned aerial vehicles (UAVs)

KCI등재

4Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

저자 : Geun-ho Kwak , No-wook Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 719-731 (13 pages)

다운로드

(기관인증 필요)

초록보기

This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

KCI등재

5Analysis of Growth Characteristics Using Plant Height and NDVI of Four Waxy Corn Varieties Based on UAV Imagery

저자 : Chan-hee Jeong , Jong-hwa Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 733-745 (13 pages)

다운로드

(기관인증 필요)

초록보기

Although waxy corn varieties developed after the 1980s show differences depending on development stages and conditions, studies on the characteristics of waxy corn during the growth stage are rare. The subject of this study was a field survey and unmanned aerial vehicle (UAV) image acquisition of four waxy corn varieties cultivated in Idam-ri, Gammul-myeon, Goesan-gun, Korea. The study was conducted in four stages at intervals of two weeks after planting in 2019. The growth characteristics of each of the four varieties were analyzed using growth curves obtained based on field survey and UAV imagery data. The characteristics of each growth stage of the four varieties of corn, as assessed using normalized difference vegetation index (NDVI) and plant height (P.H.) values, were as follows. The growth model was identified as a model in which three-parameter logistic (3PL) curves reflect the growth characteristics of corn well. In particular, it was found that the variations in growth rate shown by P.H. and NDVI values clearly explain the differences between corn varieties. Among the four cultivars, growth and development first occurred at the early vegetative stage in Daehakchal, followed by Mibaek 2, Miheukchal, and finally Hwanggeummatchal. The variations in P.H. and NDVI were achieved quickly and earlier in Daehakchal, followed by Mibaek 2, Hwanggeummatchal, and Miheukchal. It was confirmed that these results reflected the characteristics of the fast white-type varieties, while the black-type varieties were delayed, as in a previous study. These results reflect the resistance to lodging that affects the cultivation environment and the response characteristics to nutrients and moisture. It was confirmed that UAV accurately provides growth information that is very useful for analyzing the growth characteristics of each corn variety.

KCI등재

6Aerial Dataset Integration For Vehicle Detection Based on YOLOv4

저자 : Wael Omar , Youngon Oh , Jinwoo Chung , Impyeong Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 747-761 (15 pages)

다운로드

(기관인증 필요)

초록보기

With the increasing application of UAVs in intelligent transportation systems, vehicle detection for aerial images has become an essential engineering technology and has academic research significance. In this paper, a vehicle detection method for aerial images based on the YOLOv4 deep learning algorithm is presented. At present, the most known datasets are VOC (The PASCAL Visual Object Classes Challenge), ImageNet, and COCO (Microsoft Common Objects in Context), which comply with the vehicle detection from UAV. An integrated dataset not only reflects its quantity and photo quality but also its diversity which affects the detection accuracy.
The method integrates three public aerial image datasets VAID, UAVD, DOTA suitable for YOLOv4. The training model presents good test results especially for small objects, rotating objects, as well as compact and dense objects, and meets the real-time detection requirements. For future work, we will integrate one more aerial image dataset acquired by our lab to increase the number and diversity of training samples, at the same time, while meeting the real-time requirements.

KCI등재

7Establishment of Priority Update Area for Land Coverage Classification Using Orthoimages and Serial Cadastral Maps

저자 : Junyoung Song , Taeyeon Won , Su Min Jo , Yang Dam Eo , Jin Sue Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 763-776 (14 pages)

다운로드

(기관인증 필요)

초록보기

This paper introduces a method of selecting priority update areas for subdivided land cover maps by training orthoimages and serial cadastral maps in a deep learning model. For the experiment, orthoimages and serial cadastral maps were obtained from the National Spatial Data Infrastructure Portal. Based on the VGG-16 model, 51,470 images were trained on 33 subdivided classifications within the experimental area and an accuracy evaluation was conducted. The overall accuracy was 61.42%. In addition, using the differences in the classification prediction probability of the misclassified polygon and the cosine similarity that numerically expresses the similarity of the land category features with the original subdivided land cover class, the cases were classified and the areas in which the boundary setting was incorrect and in which the image itself was determined to have a problem were identified as the priority update polygons that should be checked by operators.

KCI등재

8Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method)

저자 : Youjeong Youn , Seoyeon Kim , Yemin Jeong , Subin Cho , Jonggu Kang , Geunah Kim , Yangwon Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 777-788 (12 pages)

다운로드

(기관인증 필요)

초록보기

Since aerosol has a relatively short duration and significant spatial variation, satellite observations become more important for the spatially and temporally continuous quantification of aerosol. However, optical remote sensing has the disadvantage that it cannot detect AOD (Aerosol Optical Depth) for the regions covered by clouds or the regions with extremely high concentrations. Such missing values can increase the data uncertainty in the analyses of the Earth's environment. This paper presents a spatial gap-filling framework using a univariate statistical method such as DCT-PLS (Discrete Cosine Transform-based Penalized Least Square Regression) and FMM (Fast Matching Method) inpainting. We conducted a feasibility test for the hourly AOD product from AHI (Advanced Himawari Imager) between January 1 and December 31, 2019, and compared the accuracy statistics of the two spatial gap-filling methods. When the null-pixel area is not very large (null-pixel ratio < 0.6), the validation statistics of DCT-PLS and FMM techniques showed high accuracy of CC=0.988 (MAE=0.020) and CC=0.980 (MAE=0.028), respectively. Together with the AI-based gap-filling method using extra explanatory variables, the DCT-PLS and FMM techniques can be tested for the low-resolution images from the AMI (Advanced Meteorological Imager) of GK2A (Geostationary Korea Multi-purpose Satellite 2A), GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI2 (Geostationary Ocean Color Imager) of GK2B (Geostationary Korea Multi-purpose Satellite 2B) and the high-resolution images from the CAS500 (Compact Advanced Satellite) series soon.

KCI등재

9The Potential of Sentinel-1 SAR Parameters in Monitoring Rice Paddy Phenological Stages in Gimhae, South Korea

저자 : Nawally Umutoniwase , Seung-kuk Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 789-802 (14 pages)

다운로드

(기관인증 필요)

초록보기

Synthetic Aperture Radar (SAR) at C-band is an ideal remote sensing system for crop monitoring owing to its short wavelength, which interacts with the upper parts of the crop canopy. This study evaluated the potential of dual polarimetric Sentinel-1 at C-band for monitoring rice phenology. Rice phenological variations occur in a short period. Hence, the short revisit time of Sentinel-1 SAR system can facilitate the tracking of short-term temporal morphological variations in rice crop growth. The sensitivity of SAR backscattering coefficients, backscattering ratio, and polarimetric decomposition parameters on rice phenological stages were investigated through a time-series analysis of 33 Sentinel-1 Single Look Complex images collected from 10th April to 25th October 2020 in Gimhae, South Korea. Based on the observed temporal variations in SAR parameters, we could identify and distinguish the phenological stages of the Gimhae rice growth cycle. The backscattering coefficient in VH polarisation and polarimetric decomposition parameters showed high sensitivity to rice growth. However, amongst SAR parameters estimated in this study, the VH backscattering coefficient realistically identifies all phenological stages, and its temporal variation patterns are preserved in both Sentinel-1A (S1A) and Sentinel-1B (S1B). Polarimetric decomposition parameters exhibited some offsets in successive acquisitions from S1A and S1B. Further studies with data collected from various incidence angles are crucial to determine the impact of different incidence angles on polarimetric decomposition parameters in rice paddy fields.

KCI등재

10Shoreline Changes and Erosion Protection Effects in Cotonou of Benin in the Gulf of Guinea

저자 : Chan-su Yang , Dae-woon Shin , Min-jeong Kim , Won-jun Choi , Ho-kun Jeon

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 4호 발행 연도 : 2021 페이지 : pp. 803-813 (11 pages)

다운로드

(기관인증 필요)

초록보기

Coastal erosion has been a threat to coastal communities and emerged as an urgent problem. Among the coastal communities that are under perceived threat, Cotonou located in Benin, West Africa, is considered as one of the most dangerous area due to its high vulnerability. To address this problem, in 2013, the Benin authorities established seven groynes at east of Cotonou port, and two additional intermediate groynes have recently been integrated in April 2018. However, there is no quantitative analysis of groynes so far, so it is hard to know how effective they have been. To analyze effectiveness, we used optical satellite images from different time periods, especially 2004 and 2020, and then compared changes in length, width and area of shoreline in Cotonou. The study area is divided into two sectors based on the location of Cotonou port. The difference of two areas is that Sector 2 has groynes installed while Sector 1 hasn't. As result of this study, shoreline in Sector 1 showed accretion by recovering 1.20 ㎢ of area. In contrast, 3.67 ㎢ of Sector 2 disappeared due to coastal erosion, although it has groynes. This may imply that groynes helped to lessen the rate of average erosion, however, still could not perfectly stop the coastal erosion in the area. Therefore, for the next step, we assume it is recommended to study how to maximize effectiveness of groynes.

12
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1무인기 기반 RGB 영상을 이용한 동계작물 바이오매스 평가 모델 개발

저자 : 나상일 ( Sang-il Na ) , 박찬원 ( Chan-won Park ) , 소규호 ( Kyu-ho So ) , 안호용 ( Ho-yong Ahn ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 709-720 (12 pages)

다운로드

(기관인증 필요)

초록보기

작황 모니터링에서 바이오매스의 정확한 평가를 위해서는 정확하고 신속한 작물 생육 상황 등 현장자료의 확보가 필수적이다. 또한, 바이오매스의 평가는 작황 모니터링 및 수확량 예측에 활용된다. 무인기 영상은 작물의 성장에 따라 빠르게 수집할 수 있기 때문에 정밀농업에서 포장내 공간변이 파악 및 분석에 사용되고 있다. 본 연구는 원격탐사 기술을 이용한 동계작물 바이오매스 평가 방법 개발을 위하여 식생지수(ExG)에 의한 식생 피복률(VF)과 작물 표고 모형(CSM) 기반의 초고(PH)를 이용하여 보리와 밀을 대상으로 바이오매스 평가 모델을 개발하는 것을 목적으로 하였다. 식생 피복률, 초고 및 상호작용 항을 독립변수로 하여 다중 선형 회귀 모델을 구축한 결과, 5가지 품종의 결정계수는 0.84~0.99로 나타났으며, 보리와 밀의 결정계수 및 평균 제곱근 오차는 각각 0.91, 0.90 및 102.09, 110.87 g/㎡으로 나타났다. 따라서 무인기 영상을 활용한 동계작물의 바이오매스 평가 및 작황 모니터링이 가능한 것으로 판단된다.

KCI등재

2확률론적 모델을 이용한 산사태 취약성 지도 분석: 한국 사천면과 주문진읍을 중심으로

저자 : 박성재 ( Sung-jae Park ) , Prima Riza Kadavi , 이창욱 ( Chang-wook Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 721-738 (18 pages)

다운로드

(기관인증 필요)

초록보기

이 연구의 목적은 확률모델의 2가지 방법인 Frequency Ratio(FR), Evidential Belief Functions(EBF) 모델을 사용하여 산사태 취약성을 작성하고 강릉시 사천면과 주문진읍에서의 결과 비교를 통해 각 지역에 적합한 모델을 선정하는 것이다. 사천면에서 762개, 주문진읍에서 548개의 산사태 위치를 항공 사진의 해석을 기반으로 작성되었다. 각각의 산사태 지점 중 절반을 모델링을 위해 무작위로 선택하였고 남은 산사태 지점은 검증 목적으로 사용하였다. 지형 요소, 수문 요소, 산림입지토양도(1:5,000), 임상도(1:5,000), 지질도(1:25,000)와 같은 5가지 범주로 분류된 20가지의 산사태 유발 요소가 연구에서 산사태 취약성 작성을 위해 고려되었다. 산사태 발생과 산사태 유발 요소 사이의 관계는 FR, EBF 모델을 사용하여 분석되었다. 그 후, 2 가지 모델을 AUC(curve under area) 방법을 사용하여 검증하였다. 검증 결과에 따르면 주문진읍에서 FR모델(AUC = 81.2%)이 EBF 모델(AUC = 78.9%)에 비해 정확도가 높았다. 사천면 지역에서는 EBF 모델(AUC = 83.6%)이 FR모델(AUC =81.6%)보다 정확도가 높게 나타났다. 검증 결과 FR 모델과 EBF 모델은 정확도 80% 내외로 높은 정확도를 가지고 있음을 나타낸다.

KCI등재

3고해상도 광학영상과 SAR 영상 간 정합 기법

저자 : 전형주 ( Hyeongju Jeon ) , 김용일 ( Yongil Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 739-747 (9 pages)

다운로드

(기관인증 필요)

초록보기

다중센서 위성영상 간 통합 분석 및 융합과 관련된 연구가 활발히 진행되고 있다. 이를 위해서는 다중센서 영상 간 정합이 선행되어야 한다. 대표적인 정합 기법으로는 SIFT (Scale Invariant Feature Transform)와 같은 알고리즘이 존재한다. 그러나, 광학영상과 SAR (Synthetic Aperture Radar)영상은 취득 시 센서 자세와 방사 특성의 상이함으로 영상 간 분광적인 특성이 비선형성을 이뤄 기존 기법을 적용하기에 어렵다. 이를 해결하기 위해, 본 연구에서는 특징기반 정합기법인 SAR-SIFT (Scale Invariant Feature Transform)와 형상 서술자 벡터 DLSS (Dense Local Self-Similarity)를 결합하여 개선된 영상 정합기법을 제안하였다. 본 실험 지역은 대전 일대에서 촬영된 KOMPSAT-2 영상과 Cosmo-SkyMed 영상을 이용하여 실험하였다. 제안 기법을 비교평가하기 위해 특징점 및 정합쌍 추출에 대해 대표적인 기존 기법인 SIFT와 SAR-SIFT를 이용하였다. 실험 결과를 통해 제안 기법은 기존 기법들과 다르게 두 실험 지역에서 참정합쌍을 추출하였다. 또한 추출된 정합쌍을 통한 정합 결과 정성적으로 우수하게 정합되었으며, 정량적으로도 두 실험 지역에서 각각 RMSE (Root Mean Square Error) 1.66 m, 2.65 m로 우수한 정합 결과를 보였다.

KCI등재

4GIS 자료를 활용한 도시 재개발 주변 지역의 일조 환경 분석

저자 : 강정은 ( Jung-eun Kang ) , 박수진 ( Soo-jin Park ) , 김재진 ( Jae-jin Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 749-762 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 고층 건물 신축에 의한 주변 지역의 일조 환경 변화를 계절별로 분석하였다. 지리정보시스템(geographic information system, GIS) 자료를 이용하여 부산광역시 부경대학교 일대를 중심으로 지형과 건물을 구축하고, 고층 건물 건설 전과 후에 대해 계절별로 일조 모델을 수행하였다. 고층 건물 단지 건설 전에도 대상 지역의 남동쪽에 위치한 아파트 단지와 남쪽에 위치한 봉오리산의 영향을 받아 일조 차단 영역이 넓게 나타났다. 고층 건물 단지 건설에 의해 주변 지역의 일조 시간이 감소하였고, 일출과 일몰 시간대에는 일조 차단 면적이 증가하였다. 일출 1시간 후의 경우에는 춘분(1.60%), 추분(1.58%), 하지(1.50%), 동지(1.36%) 순으로 일조 차단 면적이 증가하였다. 부경대학교 동쪽(남쪽)에 건설된 고층 건물 단지는 일출(일몰)시 서쪽(동쪽)으로 1,000m(750 m) 이상의 지점까지 일조가 차단되었다. 특히, 부경대학교 내부에서는 춘분, 하지, 추분, 동지에 각각 46.61%, 22.75%, 58.56%, 11.31%의 일조 시간이 감소하였다. 부경대학교 기숙사 건물에 대해 겨울철 1주일 동안 일조 시간을 조사한 결과, 남쪽 고층 건물 단지 건설은 기숙사 건물 서쪽(남쪽) 벽면의 일조 면적을 30.91% (49.45%) 정도 감소시켰다.

KCI등재

5GIS와 CFD 모델을 활용한 건설 현장 방풍벽 설치가 비산 먼지 확산에 미치는 영향 연구

저자 : 김동주 ( Dong-ju Kim ) , 왕장운 ( Jang-woon Wang ) , 박수진 ( Soo-jin Park ) , 김재진 ( Jae-jin Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 763-775 (13 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 지리정보시스템(GIS)자료와 전산유체역학(CFD) 모델을 사용하여 방풍벽이 건물 밀집 지역에 위치한 공사 지역에서 발생하는 대기오염물질의 확산에 미치는 영향에 대해 분석하였다. 부산 ASOS에서 10년 동안 관측된 풍속을 평균하여 기준 고도(지상 10 m)에서의 유입류로 사용하였다. 수치 실험은 방풍벽 건설 전과 5 m 및 10 m 높이의 방풍벽을 건설한 후에 대해 16 방위 풍향을 유입류로 진행하였고, 부산 ASOS에서 높은 빈도를 나타낸 북동풍과 남남서풍에 대한 상세 흐름을 분석하였다. 북동풍에서는 북동쪽에서 불어오는 흐름에 의해 비산 먼지가 확산되어 공사 지역 내부에 위치한 감천초등학교에서 대기오염물질 농도가 높게 나타났다. 5 m 높이의 방풍벽을 설치했을 때는 방풍벽 설치 전에 비해 풍속이 조금 감소했고 비산 먼지의 확산이 줄었다. 10 m 높이의 방풍벽을 설치한 경우, 초등학교에서의 평균 대기오염물질 농도는 37% 감소하였다. 남남서풍 유입류에서는 지형과 건물의 영향으로 공사 지역에서 복잡한 흐름 패턴이 형성되었다. 남쪽 공사 지역에서는 비산 먼지가 정체되어 농도가 높게 나타난 반면, 초등학교는 북풍의 흐름에 의해 대기오염물질 농도가 높게 나타났다. 방풍벽 건설 후에는 공사 지역 내부에서 풍속이 감소하면서 공사장 내부 농도는 높아졌지만, 초등학교에서의 농도는 감소했다.

KCI등재

6Guided Filter를 이용한 교차융합영상 기반 KOMPSAT-3 위성영상의 무감독변화탐지

저자 : 최재완 ( Jaewan Choi ) , 박홍련 ( Honglyun Park ) , 김동학 ( Donghak Kim ) , 최석근 ( Seokkeun Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 777-786 (10 pages)

다운로드

(기관인증 필요)

초록보기

GF(Guided Filtering)는 영상에 존재하는 에지 정보를 보존하면서 잡음을 효과적으로 제거하기 위한 대표적인 영상처리 기법이다. 본 연구에서는 GF를 이용하여 다시기 KOMPSAT-3 위성영상에 대한 무감독 변화 탐지 기법을 수행하고, 이에 대한 성능을 평가하고자 하였다. GF를 변화탐지에 활용하기 위하여, GF를 기반으로 교차융합영상을 생성하였으며, 생성된 교차융합영상에 CVA(Change Vector Analysis) 기법을 적용하여 변화 지역을 추정하고자 하였다. KOMPSAT-3 위성영상을 이용한 실험결과, 본 연구에서 제안한 기법이 기존의 영상융합 기법을 기반으로 하는 CVA 결과들과 비교하여 효과적으로 변화지역을 탐지하는 데에 활용할 수 있음을 확인하였다.

KCI등재

7대규모 홍수 매핑을 위한 저해상도 광학위성영상의 활용 방법

저자 : 박연연 ( Yanyan Piao ) , 이화선 ( Hwa-seon Lee ) , 김경탁 ( Kyung-tak Kim ) , 이규성 ( Kyu-sung Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 787-799 (13 pages)

다운로드

(기관인증 필요)

초록보기

대규모 홍수 발생 시 적기에 침수지의 공간적 분포와 변화를 모니터링하기 위한 정확하고 효율적인 매핑 수단이 필요하다. 본 연구에서는 높은 시간해상도로 동일 지역을 하루에 여러 번 관측이 가능한 저해상도 광학위성영상을 이용하여 대규모 홍수 범람으로 인한 침수지를 탐지하는 방법을 제시하고자 하였다. 2010년 1월 모로코 세부강 유역에서 발생한 대규모 홍수로 인한 침수지를 탐지하기 위하여 MODIS 일별 표면반사율 영상을 사용하였다. 영상에서 나타나는 침수지의 다양한 분광특성을 분석하여 침수지의 유형이 순수한 물표면과 물과 식물이 혼재된 형태가 함께 분포하고 있었다. 침수지 탐지는 분광특성에 따라 선정된 밴드의 반사율 영상에 직접 임계값을 적용하는 방법과 물 관련 분광지수에 임계값을 적용하는 방법을 비교하였다. 침수지 탐지 결과의 정확도 검증은 TM 영상에서 판독된 부분 지역의 침수지 지도와 비교하였다. NDWI를 제외한 나머지 방법에서 90% 이상의 높은 정확도를 얻었다. 모든 침수지 탐지 방법에서 SWIR밴드와 적색광밴드가 가장 중요하며, 2개의 밴드에 직접 임계값을 적용하는 단순한 방법으로도 정확하고 효율적인 침수지 탐지가 가능했다. 기존의 NIR밴드는 침수지 탐지에 있어서 큰 역할을 하지 못했지만, 식물이 혼재된 침수지의 유형을 구분하는데 유용했다.

KCI등재

8OpenSARShip DB를 이용한 선박식별 성능 분석

저자 : 이승재 ( Seung-jae Lee ) , 채태병 ( Tae-byeong Chae ) , 김경태 ( Kyung-tae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 801-810 (10 pages)

다운로드

(기관인증 필요)

초록보기

위성 SAR 영상을 이용한 선박 모니터링은 선박탐지, 선박변별, 선박식별의 세 단계로 분류할 수 있다. 이 중 선박탐지 및 변별에 대해서는 세계적으로 많은 연구가 이루어졌으나, 선박식별에 대해서는 소수의 연구들만이 존재한다. 따라서 향후 고성능의 선박 모니터링 시스템을 구축하기 위해서는 많은 선박식별 연구가 필요한 상황이다. 선박식별 연구를 수행하기 위해서는 먼저 여러 기종의 선박에 대한 위성 SAR 영상과 이에 대응하는 선박 기종 정보를 모두 획득하여 데이터베이스(database: DB)를 구축하는 것이 중요하다. 항공 SAR 영상을 이용한 표적식별의 경우, 지상표적에 대한 미국 moving and stationary target acquisition and recognition (MSTAR) DB를 이용하여 많은 연구들이 수행되었지만, SAR 위성을 이용한 선박식별의 경우, 아직까지 공개적으로 이용 가능한 DB가 없었다. 이에 최근 중국 Shanghai Key Laboratory에서는 유럽우주국(European Space Agency: ESA)에서 운용하는 Sentinel-1 영상과 자동인식시스템(automatic identification system: AIS)으로부터 획득한 선박정보를 결합하여 선박식별 연구용 DB인 OpenSARShip DB를 구축하였다. 이에 먼저 항공 SAR 영상을 이용한 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 위성 SAR DB에 적용하여 OpenSARShip DB의 활용성을 조사해볼 필요가 있다. 따라서 본 논문에서는 기존 항공 SAR 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 OpenSARShip DB에 적용하여 선박식별을 수행한 후, 그 성능을 분석하여 OpenSARShip DB의 활용성을 조사한다.

KCI등재

9작물분류에서 기계학습 및 딥러닝 알고리즘의 분류 성능 평가: 하이퍼파라미터와 훈련자료 크기의 영향 분석

저자 : 김예슬 ( Yeseul Kim ) , 곽근호 ( Geun-ho Kwak ) , 이경도 ( Kyung-do Lee ) , 나상일 ( Sang-il Na ) , 박찬원 ( Chan-won Park ) , 박노욱 ( No-wook Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 811-827 (17 pages)

다운로드

(기관인증 필요)

초록보기

본 연구의 목적은 다중시기 원격탐사 자료를 이용한 작물분류에서 기계학습 알고리즘과 딥러닝 알고리즘의 비교에 있다. 이를 위해 전라남도 해남군과 미국 Illinois 주의 작물 재배지를 대상으로 기계학습 알고리즘과 딥러닝 알고리즘에 대해 (1) 하이퍼파라미터와 (2) 훈련자료의 크기에 따른 영향을 비교 분석하였다. 비교 실험에는 기계학습 알고리즘으로 support vector machine(SVM)을 적용하고 딥러닝 알고리즘으로 convolutional neural network(CNN)를 적용하였다. 특히 CNN에서 2차원의 공간정보를 고려하는 2D-CNN과 시간차원을 확장한 구조의 3D-CNN을 적용하였다. 비교 실험 결과, 다양한 하이퍼파라미터를 고려해야 하는 CNN의 경우 SVM과 다르게 두 지역에서 정의된 하이퍼파라미터 값이 유사한 것으로 나타났다. 이러한 결과를 바탕으로 모델 최적화에 많은 시간이 소요되지만 최적화된 CNN 모델을 다른 지역으로 확장할 수 있는 전이학습의 적용 가능성이 높을 것으로 판단된다. 다음 훈련자료 크기에 따른 비교 실험 결과, SVM 보다 CNN에서 훈련자료 크기의 영향이 큰 것으로 나타났는데 특히 다양한 공간특성을 갖는 Illinois 주에서 이러한 경향이 두드러지게 나타났다. 또한 Illinois 주에서 3D-CNN의 분류 성능이 저하되는 것으로 나타났는데, 이는 모델 복잡도가 증가하면서 과적합의 영향이 발생한 것으로 판단된다. 즉 모델의 훈련 정확도는 높지만 다양한 공간특성이나 입력 자료의 잡음 효과 등으로 오히려 분류 성능이 저하된 것으로 나타났다. 이러한 결과는 대상 지역의 공간특성을 고려해 적절한 분류 알고리즘을 선택해야 하는 것을 의미한다. 또한 CNN에서 특히, 3D-CNN에서 일정 수준의 분류 성능을 담보하기 위해 다량의 훈련자료 수집이 필요하다는 것을 의미한다.

KCI등재

10국내 작황 모니터링을 위한 무인항공기 적용방안

저자 : 나상일 ( Sang-il Na ) , 박찬원 ( Chan-won Park ) , 소규호 ( Kyu-ho So ) , 안호용 ( Ho-yong Ahn ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 5호 발행 연도 : 2018 페이지 : pp. 829-846 (18 pages)

다운로드

(기관인증 필요)

초록보기

작황 모니터링은 농민들에게 최적의 작물 생산을 위한 농작업 관리 전략을 수립하는데 유용한 정보를 제공할 수 있다. 그러나 시료 채취에 의한 분석 등에 한정된 기존의 현장 모니터링 방법은 많은 시간과 노동력이 필요하다. 무인항공기는 고해상도 이미지를 신속하고 정기적으로 취득할 수 있는 장점이 있기 때문에 재배면적, 생육인자, 생육이상 및 생산량 추정 등과 같은 작황 모니터링 분야에 효과적으로 활용될 수 있다. 또한, 위성과 비교하여 비행 고도가 낮아 흐린 날씨에서도 높은 화질의 영상을 수집할 수 있다. 본 연구는 작황 모니터링 분야에서의 무인항공기 활용 가능성을 검토하고 무인항공기 기반의 작황 정보 생산을 위한 적용방안을 제시하고자 하였다.

1
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기