논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ

KCI등재

Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ

Sung-jae Park , Chang-wook Lee
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 34권1호
  • : 연속간행물
  • : 2018년 02월
  • : 75-87(13pages)
대한원격탐사학회지

DOI


목차


					

키워드 보기


초록 보기

The Baekdu volcano (2,750 m a.s.l.) is located on the border between Yanggando Province in North Korea and Jilin Province in China. Its eruption in 946 A.D. was among the largest and most violent eruptions in the past 5,000 years, with a volcanic explosivity index (VEI) of 7. In this study, we processed and analyzed lahar-inundation hazard zone data, applying a geographic information system program with menudriven software (LAHARZ) to a shuttle radar topography mission 30 m digital elevation model. LAHARZ can simulate inundation hazard zones created by large lahar flows that originate on volcano flanks using simple input parameters. The LAHARZ is useful both for mapping hazard zones and estimating the extent of damage due to active volcanic eruption. These results can be used to establish evacuation plans for nearby residents without field survey data. We applied two different simulation methods in LAHARZ to examine six water systems near Baekdu volcano, selecting weighting factors by varying the ratio of height and distance. There was a slight difference between uniform and non-uniform ratio changes in the lahar-inundation hazard zone maps, particularly as slopes changed on the east and west sides of the Baekdu volcano. This result can be used to improve monitoring of volcanic eruption hazard zones and prevent disasters due to large lahar flows.

UCI(KEPA)

I410-ECN-0102-2018-400-003782182

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1764


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권3호(2022년 06월) 수록논문
최근 권호 논문
| | | |

KCI등재

1Landsat영상을 이용한 토지피복 변화에 따른 행정중심복합도시의 표면 열섬현상 변화분석

저자 : 이경일 ( Kyungil Lee ) , 임철희 ( Chul-hee Lim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 225-236 (12 pages)

다운로드

(기관인증 필요)

초록보기

도시의 인구 증가와 이에 따른 개발로 인한 도시화는 도시 내 열섬현상과 같은 다양한 환경문제를 유발할 수 있다. 특히 계획적으로 구축되는 신도시의 경우 짧은 기간에 진행되는 급격한 도시화로 인한 도시 기후의 변화를 분석하기에 적절한 연구대상지로 여겨진다. 본 연구에서는 Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) 위성영상을 활용하여 세종특별자치시 내 행정중심복합도시의 2013년부터 2020년 개발계획에 의한 토지피복 변화와 이에 따른 표면 열섬현상의 변화를 분석하였다. 이를 위해 위성영상에서 제공하는 열적외선 밴드값과 방사율을 고려하여 지표면온도를 산출하고, 이를 기반으로 표면 열섬현상 강도와 Urban Thermal Field Variance Index (UTFVI)의 변화분석을 수행하였다. 개발이 진행됨에 따른 토지피복 변화 및 피복별 열섬현상 강도의 차이 확인을 위해 환경부에서 제공하는 중분류 토지피복지도를 활용하였다. 분석 결과, 연구지역의 시가화 면적은 15% 증가하였고 자연식생은 28% 이상 줄어든 것이 확인되었다. 또한 이에 따른 열섬현상의 확장 및 강도 증가가 관측되었고, 열섬현상이 발생된 지역의 생태적 수준은 매우 낮은 것을 확인하였다. 본 연구를 통해 급격한 도시화에 따른 열 환경의 정량적 변화 및 생태적 수준을 확인하고, 주거환경의 열 환경 개선을 위한 추가적인 정책의 필요성이 제시될 수 있다.


Urbanization due to population growth and regional development can cause various environmental problems, such as the urban heat island phenomenon. A planned city is considered an appropriate study site to analyze changes in urban climate caused by rapid urbanization in a short-term period. In this study, changes in land cover and surface heat island phenomenon were analyzed according to the development plan in Sejong City from 2013 to 2020 using Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) satellite imagery. The surface temperature was calculated in consideration of the thermal infrared band value provided by the satellite image and the emissivity, and based on this the surface heat island effect intensity and Urban Thermal Field Variance Index (UTFVI) change analysis were performed. The level-2 land cover map provided by the Ministry of Environment was used to confirm the change in land cover as the development progressed and the difference in the surface heat island intensity by each land cover. As a result of the analysis, it was confirmed that the urbanized area increased by 15% and the vegetation decreased by more than 28%. Expansion and intensification of the heat island phenomenon due to urban development were observed, and it was confirmed that the ecological level of the area where the heat island phenomenon occurred was very low. Therefore, It can suggest the need for a policy to improve the residential environment according to the quantitative change of the thermal environment due to rapid urbanization.

KCI등재

2딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구

저자 : 박수호 ( Suho Bak ) , 김흥민 ( Heung-min Kim ) , 이희원 ( Heeone Lee ) , 한정익 ( Jeong-ik Han ) , 김탁영 ( Tak-young Kim ) , 임재영 ( Jae-young Lim ) , 장선웅 ( Seon Woong Jang )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 237-250 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 딥러닝 기반 다중 객체 추적 모델을 활용하여 수중드론으로 촬영된 영상으로부터 특정 해역의 조식동물 현존량을 추정하는 방법을 제안한다. 수중드론 영상 내에 포함된 조식동물을 클래스 별로 탐지하기 위해 YOLOv5 (You Only Look Once version 5)를 활용하였으며, 개체수 집계를 위해 DeepSORT (Deep Simple Online and real-time tracking)를 활용하였다. GPU 가속기를 활용할 수 있는 워크스테이션 환경에서 두 모델의 성능 평가를 수행하였으며, YOLOv5 모델은 평균 0.9 이상의 모델의 정확도(mean Average Precision, mAP)를 보였으며, YOLOv5s 모델과 DeepSORT 알고리즘을 활용하였을 때, 4 k 해상도 기준 약 59 fps의 속도를 보이는 것을 확인하였다. 실해역 적용 결과 약 28%의 과대 추정하는 경향이 있었으나 객체 탐지 모델만 활용하여 현존량을 추정하는 것과 비교했을 때 오차 수준이 낮은 것을 확인하였다. 초점을 상실한 프레임이 연속해서 발생할 때와 수중드론의 조사 방향이 급격히 전환되는 환경에서의 정확도 향상을 위한 후속 연구가 필요하지만 해당 문제에 대한 개선이 이루어진다면, 추후 조식동물 구제 사업 및 모니터링 분야의 의사결정 지원자료 생산에 활용될 수 있을 것으로 판단된다.


In this study, we propose a method to estimate the biomass of invertebrate grazers from the videos with underwater drones by using a multi-object tracking model based on deep learning. In order to detect invertebrate grazers by classes, we used YOLOv5 (You Only Look Once version 5). For biomass estimation we used DeepSORT (Deep Simple Online and real-time tracking). The performance of each model was evaluated on a workstation with a GPU accelerator. YOLOv5 averaged 0.9 or more mean Average Precision (mAP), and we confirmed it shows about 59 fps at 4 k resolution when using YOLOv5s model and DeepSORT algorithm. Applying the proposed method in the field, there was a tendency to be overestimated by about 28%, but it was confirmed that the level of error was low compared to the biomass estimation using object detection model only. A follow-up study is needed to improve the accuracy for the cases where frame images go out of focus continuously or underwater drones turn rapidly. However, should these issues be improved, it can be utilized in the production of decision support data in the field of invertebrate grazers control and monitoring in the future.

KCI등재

3Azimuth Stitching 없는 ScanSAR 영상화: 시간영역 교차상관

저자 : 원중선 ( Joong-sun Won )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 251-263 (13 pages)

다운로드

(기관인증 필요)

초록보기

이 논문은 ScanSAR 영상화에 대한 새로운 아이디어를 소개한다. 버스트(Burst) 모드로 신호를 획득하는 ScanSAR의 전통적인 영상화는 버스트 간 영상을 연결하는 Azimuth stitching이 필요하여, 이 과정은 방사왜곡 및 위상왜곡을 유발한다. 전통적인 SPECAN 방법 대신 이 논문에서는 시간영역 교차상관을 이용하여 Azimuth stitching 과정 없이 영상화가 가능한 새로운 방법을 소개한다. 이 방법의 핵심 아이디어는 기준함수 밴드폭을 적절히 확장하여 시간영역 교차상관을 수행하면 Azimuth stitching 없이도 영상화가 가능하다는 점이다. 이 방법을 실제 위성 원시신호에 적용하여 영상 전 구간에서 영상품질과 방사왜곡 관점에서 우수한 성능을 검증하였다. 버스트 모드를 기반으로 하는 ScanSAR는 영상품질(3 dB 해상도, peak-to-sidelobe ratio (PSLR), 압축률, Speckle 잡음 등)은 모든 품질지표에서 도플러 주파수 전 영역 신호를 이용하는 Stripmap에 비해 낮을 수밖에 없다. 그러나, 각 활용분야 및 기술에 따라 선정된 특정 영상 품질지표 만을 개선할 수 있는 방법은 다양하다. 따라서 ScanSAR 영상화는 모든 활용분야에 획일적인 방법에 의한 영상화보다는, 각 활용에 따라 요구되는 품질지표 우선순위에 따라 최적화할 수 있는 영상화 방법을 적용하는 차별화 전략이 요구된다.


This paper presents an idea of ScanSAR image formation. For image formation of ScanSAR that utilizes the burst mode for raw signal acquisition, most conventional single burst methods essentially require a step of azimuth stitching which contributes to radiometric and phase distortions to some extent. Time-domain cross correlation could replace SPECAN which is most popularly used for ScanSAR processing. The core idea of the proposed method is that it is possible to relieve the necessity of azimuth stitching by an extension of Doppler bandwidth of the reference function to the burst cycle period. Performance of the proposed method was evaluated by applying it to the raw signals acquired by a spaceborne SAR system, and results satisfied all image quality requirements including 3 dB width, peak-to-sidelobe ratio (PSLR), compression ratio, speckle noise, etc. Image quality of ScanSAR is inferior to that of Stripmap in all aspects. However, it is also possible to improve the quality of ScanSAR image competitive to that of Stripmap if focused on a certain parameter while reduced qualities of other parameters. Thus, it is necessary for a ScanSAR processor to offer a great degree of flexibility complying with different requirements for different applications and techniques.

KCI등재

4LSTM을 이용한 한반도 근해 이상수온 예측모델

저자 : 최혜민 ( Hey Min Choi ) , 김민규 ( Min-kyu Kim ) , 양현 ( Hyun Yang )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 265-282 (18 pages)

다운로드

(기관인증 필요)

초록보기

해수면 온도(Sea surface temperature, SST)는 지구시스템에서 해양의 순환과 생태계에 큰 영향을 주는 요소이다. 지구온난화로 한반도 근해 해수면 온도에 변화가 생기면서 이상 수온(고수온, 저수온) 현상이 발생하여 해양생태계와 수산업 피해를 지속적으로 발생시키고 있다. 따라서 본 연구는 한반도 근해 해수면 온도를 예측하여 이상 수온 현상 예측으로 피해를 예방하는 방법론을 제안한다. 연구 지역은 한반도 근해로 설정하여 동시간대 해수면 온도 데이터를 사용하기 위해 Europe Centre for Medium-Range Weather Forecasts (ECMWF)의 ERA5 자료를 사용하였다. 연구방법으로는 해수면 온도 데이터의 시계열 특징을 고려하여 딥러닝 모델 중 시계열 데이터 예측에 특화된 Long Short-Term Memory (LSTM) 알고리즘을 이용하였다. 예측 모델은 1~7일 이후 한반도 근해 해수면 온도를 예측하고 고수온(High water temperature, HWT) 혹은 저수온(Low water temperature, LWT) 현상을 예측한다. 해수면 온도 예측 정확도 평가를 위해 결정계수(Coefficient of determination, R2), 평균 제곱근 편차(Root Mean Squared Error, RMSE), 평균 절대 백분율 오차(Mean Absolute Percentage Error, MAPE) 지표를 사용하였다. 예측 모델의 여름철(JAS) 1일 예측 결과는 R2=0.996, RMSE=0.119℃, MAPE=0.352% 이고, 겨울철(JFM) 1일 예측 결과는 R2=0.999, RMSE=0.063℃, MAPE=0.646% 이었다. 예측한 해수면 온도를 이용하여 이상 수온 예측 정확도 평가를 F1 Score로 수행하였다(여름철(2021/08/05) 고수온 예측 결과 F1 Score=0.98, 겨울철(2021/02/19) 저수온 예측 결과 F1 Score=1.0). 예측 기간이 증가하면서 예측 모델이 해수면 온도를 과소 추정하는 경향을 보여주었고, 이로 인해 이상 수온 예측 정확도 또한 낮아졌다. 따라서, 향후 예측 모델의 과소 추정 원인을 분석하고 예측 정확도 향상을 위한 연구가 필요할 것으로 판단된다.


Sea surface temperature (SST) is a factor that greatly influences ocean circulation and ecosystems in the Earth system. As global warming causes changes in the SST near the Korean Peninsula, abnormal water temperature phenomena (high water temperature, low water temperature) occurs, causing continuous damage to the marine ecosystem and the fishery industry. Therefore, this study proposes a methodology to predict the SST near the Korean Peninsula and prevent damage by predicting abnormal water temperature phenomena. The study area was set near the Korean Peninsula, and ERA5 data from the European Center for Medium-Range Weather Forecasts (ECMWF) was used to utilize SST data at the same time period. As a research method, Long Short-Term Memory (LSTM) algorithm specialized for time series data prediction among deep learning models was used in consideration of the time series characteristics of SST data. The prediction model predicts the SST near the Korean Peninsula after 1- to 7-days and predicts the high water temperature or low water temperature phenomenon. To evaluate the accuracy of SST prediction, Coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) indicators were used. The summer (JAS) 1-day prediction result of the prediction model, R2=0.996, RMSE=0.119℃, MAPE=0.352% and the winter (JFM) 1-day prediction result is R2=0.999, RMSE=0.063℃, MAPE=0.646%. Using the predicted SST, the accuracy of abnormal sea surface temperature prediction was evaluated with an F1 Score (F1 Score=0.98 for high water temperature prediction in summer (2021/08/05), F1 Score=1.0 for low water temperature prediction in winter (2021/02/19)). As the prediction period increased, the prediction model showed a tendency to underestimate the SST, which also reduced the accuracy of the abnormal water temperature prediction. Therefore, it is judged that it is necessary to analyze the cause of underestimation of the predictive model in the future and study to improve the prediction accuracy.

KCI등재

5표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석

저자 : 이수미 ( Sumi Lee ) , 이윤경 ( Yun-kyung Lee ) , 김상완 ( Sang-wan Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 283-298 (16 pages)

다운로드

(기관인증 필요)

초록보기

Synthetic Aperture Radar (SAR)영상은 날씨와 주야에 관계없이 취득될 수 있어 감시, 정찰 및 국토안보 등의 목적을 위한 자동표적인식(Automatic Target Recognition, ATR)에 활용 가능성이 높다. 그러나, 식별 시스템 개발을 위해 다양하고 방대한 양의 시험영상을 구축하는 것은 비용, 운용측면에서 한계가 있다. 최근 표적 모델을 이용하여 시뮬레이션된 SAR 영상에 기반한 표적 식별 시스템 개발에 대한 관심이 높아지고 있다. SARATR 분야에서 대표적으로 이용되는 산란점 매칭과 템플릿 매칭 기반 알고리즘을 적용하여 표적식별을 수행하였다. 먼저 산란점 매칭 기반의 식별은 점을 World View Vector (WVV)로 재구성 후 Weighted Bipartite Graph Matching (WBGM)을 수행하였고, 템플릿 매칭을 통한 식별은 서로 인접한 산란점으로 재구성한 두 영상간의 상관계수를 사용하였다. 개발한 두 알고리즘의 식별성능시험을 위해 최근 미국 Defense Advanced Research Projects Agency (DARPA)에서 배포한 표적 시뮬레이션 영상인 Synthetic and Measured Paired Labeled Experiment (SAMPLE) 자료를 사용하였다. 표준 환경, 표적의 부분 폐색, 랜덤 폐색 정도에 따른 알고리즘 성능을 분석하였다. 산란점 매칭 알고리즘의 식별 성능이 템플릿 매칭보다 전반적으로 우수하였다. 10개 표적을 대상으로 표준 환경에서의 산란점 매칭기반 평균 식별률은 85.1%, 템플릿 매칭기반은 74.4%이며, 표적별 식별성능 편차 또한 산란점 매칭기법이 템플릿 매칭기법보다 작았다. 표적의 부분 폐색정도에 따른 성능은 산란점 매칭기반 알고리즘이 템플릿 매칭보다 약 10% 높고, 표적의 랜덤 폐색 60% 발생에도 식별률이 73.4% 정도로 비교적 높은 식별성능을 보였다.


As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.

KCI등재

6해양관측부위 자료 기반 딥러닝 기술을 활용한 해양 혼합층 수온 예측

저자 : 고관섭 ( Kwan-seob Ko ) , 변성현 ( Seong-hyeon Byeon ) , 김영원 ( Young-won Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 299-309 (11 pages)

다운로드

(기관인증 필요)

초록보기

최근 한반도 주역 해역의 수온이 꾸준히 증가하고 있다. 수온변화는 어업생태계에 영향을 미칠 뿐만 아니라 해양에서의 군사작전과도 밀접히 연관되어 있다. 본 연구는 딥러닝 기술을 기반으로 하는 다양한 예측모델을 통해 단기간 수온예측을 시도함으로써 어떠한 모델이 수온예측분야에 더욱 적합한지를 제시하는 것에 목적을 두었다. 예측을 위해 사용한 데이터는 국립수산과학원에서 해양 관측부이를 통해 관측한 2016년부터 2020년까지 동해 지역(고성, 양양, 강릉, 영덕)의 수온 데이터이다. 또한 예측을 위한 모델로는 시계열 데이터 예측에 우수한 성능을 보이는 Long Short-Term Memory (LSTM), Bidirectional LSTM 그리고 Gated Recurrent Unit (GRU) 기법을 사용하였다. 기존 연구가 LSTM만을 활용하였던데 반해 이번 연구에서는 LSTM 외에 다양한 기법을 적용함으로써 각 기법의 예측 정확도와 수행시간을 비교하였다. 연구결과, 1시간 예측을 기준으로 모든 관측지점에서 Bidirectional LSTM과 GRU 기법이 실제값과 예측값의 오차가 가장 적은 것으로 확인되었으며, 학습시간에 있어서는 GRU가 가장 빠른 것으로 확인되었다. 이를 통해, 예측 오차를 줄이면서 정확도를 향상하기 위한 수온예측에는 Bidirectional LSTM을 활용하고 대잠작전처럼 정확도 외에 실시간 예측이 필요한 분야에 있어서는 GRU 기법을 활용하는 방안이 더욱 적절할 것으로 판단된다.


Recently, The sea water temperature around Korean Peninsula is steadily increasing. Water temperature changes not only affect the fishing ecosystem, but also are closely related to military operations in the sea. The purpose of this study is to suggest which model is more suitable for the field of water temperature prediction by attempting short-term water temperature prediction through various prediction models based on deep learning technology. The data used for prediction are water temperature data from the East Sea (Goseong, Yangyang, Gangneung, and Yeongdeok) from 2016 to 2020, which were observed through marine observation by the National Fisheries Research Institute. In addition, we use Long Short-Term Memory (LSTM), Bidirectional LSTM, and Gated Recurrent Unit (GRU) techniques that show excellent performance in predicting time series data as models for prediction. While the previous study used only LSTM, in this study, the prediction accuracy of each technique and the performance time were compared by applying various techniques in addition to LSTM. As a result of the study, it was confirmed that Bidirectional LSTM and GRU techniques had the least error between actual and predicted values at all observation points based on 1 hour prediction, and GRU was the fastest in learning time. Through this, it was confirmed that a method using Bidirectional LSTM wasrequired for water temperature prediction to improve accuracy while reducing prediction errors. In areas that require real-time prediction in addition to accuracy, such as anti-submarine operations, it is judged that the method of using the GRU technique will be more appropriate.

KCI등재

7농림위성 산림분야 식생지수 검보정 사이트 설계

저자 : 임중빈 ( Joongbin Lim ) , 차성은 ( Sungeun Cha ) , 원명수 ( Myoungsoo Won ) , 김준 ( Joon Kim ) , 박주한 ( Juhan Park ) , 류영렬 ( Youngryel Ryu ) , 이우균 ( Woo-kyun Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 3호 발행 연도 : 2022 페이지 : pp. 311-326 (16 pages)

다운로드

(기관인증 필요)

초록보기

우리나라 산림의 효율적인 관리와 산림 모니터링을 위해 산림청은 농림위성을 개발 중이며 2025년 발사 예정이다. 농림위성을 효율적으로 활용하기 위해 산림청 국립산림과학원은 36종의 농림위성 산림분야 활용산출물 개발을 진행 중이다. 원격탐사 기법을 활용하여 도출된 산출물들은 지상검증이 요구되며 해당 산출물들에 대한 품질 모니터링 결과를 지속적으로 보고해야 한다. 국내 최초로 산림분야 활용 위성이 개발되는 상황이라 국내에는 공식적인 산림분야 활용 산출물 검보정 사이트가 부재하다. 이에 저자들은 국제기준에 맞춰 농림위성 산림분야 활용산출물 검보정을 위한 검보정 사이트를 설계하였다. 또한 전국적으로 검보정 사이트를 설치하기 위해 적정 센서를 선택하여 해당 센서의 활용 가능성을 평가하였다. 평가 결과 지상 관측데이터와 Sentinel-2 영상과의 산림 산출물에 대한 오차가 ±5% 이내로 관측되어 해당 센서를 활용하여 전국적으로 확장이 가능함을 확인하였다.


The Compact Advanced Satellite 500-4 (CAS500-4) is under development to efficiently manage and monitor forests in Korea and is scheduled to launch in 2025. The National Institute of Forest Science is developing 36 types of forestry applications to utilize the CAS500-4 efficiently. The products derived using the remote sensing method require validation with ground reference data, and the quality monitoring results for the products must be continuously reported. Due to it being the first time developing the national forestry satellite, there is no official calibration and validation site for forestry products in Korea. Accordingly, the author designed a calibration and validation site for the forestry products following international standards. In addition, to install calibration and validation sites nationwide, the authors selected appropriate sensors and evaluated the applicability of the sensors. As a result, the difference between the ground observation data and the Sentinel-2 image was observed to be within ±5%, confirming that the sensor could be used for nationwide expansion.

1
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1Validation of Sea Surface Temperature (SST) from Satellite Passive Microwave Sensor (GPM/GMI) and Causes of SST Errors in the Northwest Pacific

저자 : Hee-young Kim , Kyung-ae Park , Sung-rae Chung , Seon-kyun Baek , Byung-il Lee , In-chul Shin , Chu-yong Chung , Jae-gwan Kim , Won-chan Jung

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 1-15 (15 pages)

다운로드

(기관인증 필요)

초록보기

Passive microwave sea surface temperatures (SST) were validated in the Northwest Pacific using a total of 102,294 collocated matchup data between Global Precipitation Measurement (GPM) / GPM Microwave Sensor (GMI) data and oceanic in-situ temperature measurements from March 2014 to December 2016. A root-mean-square (RMS) error and a bias error of the GMI SST measurements were evaluated to 0.93℃ and 0.05℃, respectively. The SST differences between GMI and in-situ measurements were caused by various factors such as wind speed, columnar atmospheric water vapor, land contamination near coastline or islands. The GMI SSTs were found to be higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. As the wind speed increased at night, SST errors showed positive bias. In addition, other factors, coming from atmospheric water vapor, sensitivity degradation at a low temperature range, and land contamination, also contributed to the errors. One of remarkable characteristics of the errors was their latitudinal dependence with large errors at high latitudes above 30°N. Seasonal characteristics revealed that the errors were most frequently observed in winter with a significant positive deviation. This implies that SST errors tend to be large under conditions of high wind speeds and low SSTs. Understanding of microwave SST errors in this study is anticipated to compensate less temporal capability of Infrared SSTs and to contribute to increase a satellite observation rate with time, especially in SST composite process.

KCI등재

2Grounding Line Change of Ronne Ice Shelf, West Antarctica, from 1996 to 2015 Observed by using DDInSAR

저자 : Soojeong Han , Hyangsun Han , Hoonyol Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 17-24 (8 pages)

다운로드

(기관인증 필요)

초록보기

Grounding line of a glacier or ice shelf where ice bottom meets the ocean is sensitive to changes in the polar environment. Recent rapid changes of grounding lines have been observed especially in southwestern Antarctica due to global warming. In this study, ERS-1/2 and Sentinel-1A Synthetic Aperture Radar (SAR) image were interferometrically acquired in 1996 and 2015, respectively, to monitor the movement of the grounding line in the western part of Ronne Ice Shelf near the Antarctic peninsula. Double- Differential Interferometric SAR (DDInSAR) technique was applied to remove gravitational flow signal to detect grounding line from the interferometric phase due to the vertical displacement of the tide. The result showed that ERS-1/2 grounding lines are almost consistent with those from Rignot et al. (2011) which used the similar dataset, confirming the credibility of the data processing. The comparison of ERS-1/2 and Sentinle- 1A DDInSAR images showed a grounding line retreat of 1.0 ± 0.1 km from 1996 to 2015. It is also proved that the grounding lines based on the 2004 MODIS Mosaic of Antarctica (MOA) images and digital elevation model searching for ice plain near coastal area (Scambos et al., 2017), is not accurate enough especially where there is a ice plain with no tidal motion.

KCI등재

3Effect of Hydro-meteorological and Surface Conditions on Variations in the Frequency of Asian Dust Events

저자 : Jae-hyun Ryu , Sungwook Hong , Sang Jin Lyu , Chu-yong Chung , Inchul Shin , Jaeil Cho

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 25-43 (19 pages)

다운로드

(기관인증 필요)

초록보기

The effects of hydro-meteorological and surface variables on the frequency of Asian dust events (FAE) were investigated using ground station and satellite-based data. Present weather codes 7, 8, and 9 derived from surface synoptic observations (SYNOP) were used for counting FAE. Surface wind speed (SWS), air temperature (Ta), relative humidity (RH), and precipitation were analyzed as hydro-meteorological variables for FAE. The Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), and snow cover fraction (SCF) were used to consider the effects of surface variables on FAE. The relationships between FAE and hydro-meteorological variables were analyzed using Z-score and empirical orthogonal function (EOF) analysis. Although all variables expressed the change of FAE, the degrees of expression were different. SWS, LST, and Ta (indices applicable when Z-score was < 0) explained about 63.01, 58.00, and 56.17% of the FAE, respectively. For NDVI, precipitation, and RH, Asian dust events occurred with a frequency of about 55.38, 67.37, and 62.87% when the Z-scores were > 0. EOF analysis for the FAE showed the seasonal cycle, change pattern, and surface influences related to dryness condition for the FAE. The intensity of SWS was the main cause for change of FAE, but surface variables such as LST, SCF, and NDVI also were expressed because wet surface conditions suppress FAE. These results demonstrate that not only SWS and precipitation, but also surface variables, are important and useful precursors for monitoring Asian dust events.

KCI등재

4Data Mining-Aided Automatic Landslide Detection Using Airborne Laser Scanning Data in Densely Forested Tropical Areas

저자 : Mustafa Ridha Mezaal , Biswajeet Pradhan

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 45-74 (30 pages)

다운로드

(기관인증 필요)

초록보기

Landslide is a natural hazard that threats lives and properties in many areas around the world. Landslides are difficult to recognize, particularly in rainforest regions. Thus, an accurate, detailed, and updated inventory map is required for landslide susceptibility, hazard, and risk analyses. The inconsistency in the results obtained using different features selection techniques in the literature has highlighted the importance of evaluating these techniques. Thus, in this study, six techniques of features selection were evaluated. Veryhigh- resolution LiDAR point clouds and orthophotos were acquired simultaneously in a rainforest area of Cameron Highlands, Malaysia by airborne laser scanning (LiDAR). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Training samples were evaluated using a stratified random sampling method and set to 70% training samples. Two machine-learning algorithms, namely, Support Vector Machine (SVM) and Random Forest (RF), were used to evaluate the performance of each features selection algorithm. The overall accuracies of the SVM and RF models revealed that three of the six algorithms exhibited higher ranks in landslide detection. Results indicated that the classification accuracies of the RF classifier were higher than the SVM classifier using either all features or only the optimal features. The proposed techniques performed well in detecting the landslides in a rainforest area of Malaysia, and these techniques can be easily extended to similar regions.

KCI등재

5Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ

저자 : Sung-jae Park , Chang-wook Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 75-87 (13 pages)

다운로드

(기관인증 필요)

초록보기

The Baekdu volcano (2,750 m a.s.l.) is located on the border between Yanggando Province in North Korea and Jilin Province in China. Its eruption in 946 A.D. was among the largest and most violent eruptions in the past 5,000 years, with a volcanic explosivity index (VEI) of 7. In this study, we processed and analyzed lahar-inundation hazard zone data, applying a geographic information system program with menudriven software (LAHARZ) to a shuttle radar topography mission 30 m digital elevation model. LAHARZ can simulate inundation hazard zones created by large lahar flows that originate on volcano flanks using simple input parameters. The LAHARZ is useful both for mapping hazard zones and estimating the extent of damage due to active volcanic eruption. These results can be used to establish evacuation plans for nearby residents without field survey data. We applied two different simulation methods in LAHARZ to examine six water systems near Baekdu volcano, selecting weighting factors by varying the ratio of height and distance. There was a slight difference between uniform and non-uniform ratio changes in the lahar-inundation hazard zone maps, particularly as slopes changed on the east and west sides of the Baekdu volcano. This result can be used to improve monitoring of volcanic eruption hazard zones and prevent disasters due to large lahar flows.

KCI등재

6Development of an R-based Spatial Downscaling Tool to Predict Fine Scale Information from Coarse Scale Satellite Products

저자 : Geun-ho Kwak , No-wook Park , Phaedon C. Kyriakidis

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 89-99 (11 pages)

다운로드

(기관인증 필요)

초록보기

Spatial downscaling is often applied to coarse scale satellite products with high temporal resolution for environmental monitoring at a finer scale. An area-to-point regression kriging (ATPRK) algorithm is regarded as effective in that it combines regression modeling and residual correction with areato- point kriging. However, an open source tool or package for ATPRK has not yet been developed. This paper describes the development and code organization of an R-based spatial downscaling tool, named R4ATPRK, for the implementation of ATPRK. R4ATPRK was developed using the R language and several R packages. A look-up table search and batch processing for computation of ATP kriging weights are employed to improve computational efficiency. An experiment on spatial downscaling of coarse scale land surface temperature products demonstrated that this tool could generate downscaling results in which overall variations in input coarse scale data were preserved and local details were also well captured. If computational efficiency can be further improved, and the tool is extended to include certain advanced procedures, R4ATPRK would be an effective tool for spatial downscaling of coarse scale satellite products.

KCI등재

7Using a Refined SBAS Algorithm to Determine Surface Deformation in the Long Valley Caldera and Its Surroundings from 2003-2010

저자 : Won-jin Lee , Zhong Lu , Hyung-sup Jung , Sun-cheon Park , Duk Kee Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 101-115 (15 pages)

다운로드

(기관인증 필요)

초록보기

The Long Valley area and its surroundings are part of a major volcano system where inflation occurred in the resurgent dome in the 1990s. We used ENVISAT data to monitor surface deformation of the Long Valley area and its surroundings after the inflation, from 2003-2010. To retrieve the time series of the deformation, we applied the refined Small BAseline Subset (SBAS) algorithm which is improved using an iterative approach to minimize unwrapping error. Moreover, ascending and descending data were used to decompose the horizontal and vertical deformation in detail. To confirm refined SBAS results, we used GPS dataset. The InSAR errors are estimated as ±1.0 mm/yr and ±0.8 mm/yr from ascending and descending tracks, respectively. Compare to the previous study of 1990s over the Long Valley and its surroundings, Paoha Island and CASA geothermal area still subside. The deformation pattern in the Long Valley area during the study period (2003-2010) went through both subsidence (2003-2007) and slow uplift (2007-2010) episodes. Our research also shows no deformation signal near McGee Creek. Our study provided a better understanding of the surface changes of the indicators in the 1990s and 2000s.

KCI등재

8Evaluation of Polarimetric Parameters for Flood Detection Using PALSAR-2 Quad-pol Data

저자 : Yoon Taek Jung , Sang-eun Park , Chang-sun Baek , Dong-hwan Kim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 117-126 (10 pages)

다운로드

(기관인증 필요)

초록보기

This study aims to evaluate the usability of polarimetric SAR measurements for discriminating water-covered area from other land cover types and to propose polarimetric parameters showing the better response to the flood. Flood-related changes in the polarimetric parameters were studied using the L-band PALSAR-2 quad-pol mode data acquired before and after the severe flood events occurred in Joso city, Japan. The experimental results showed that, among various polarimetric parameters, the HH-polarization intensity, the Shannon entropy, and the surfaces scattering component of model-based decomposition were found to be useful to discriminate water-covered areas from other land cover types. Particularly, an unsupervised change detection with the Shannon entropy provides the best result for an automated mapping of flood extents.

KCI등재

9Operational Atmospheric Correction Method over Land Surfaces for GOCI Images

저자 : Hwa-seon Lee , Kyu-sung Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 127-139 (13 pages)

다운로드

(기관인증 필요)

초록보기

The GOCI atmospheric correction over land surfaces is essential for the time-series analysis of terrestrial environments with the very high temporal resolution. We develop an operational GOCI atmospheric correction method over land surfaces, which is rather different from the one developed for ocean surface. The GOCI atmospheric correction method basically reduces gases absorption and Rayleigh and aerosol scatterings and to derive surface reflectance from at-sensor radiance. We use the 6S radiative transfer model that requires several input parameters to calculate surface reflectance. In the sensitivity analysis, aerosol optical thickness was the most influential element among other input parameters including atmospheric model, terrain elevation, and aerosol type. To account for the highly variable nature of aerosol within the GOCI target area in northeast Asia, we generate the spatio-temporal aerosol maps using AERONET data for the aerosol correction. For a fast processing, the GOCI atmospheric correction method uses the pre-calculated look up table that directly converts at-sensor radiance to surface reflectance. The atmospheric correction method was validated by comparing with in-situ spectral measurements and MODIS reflectance products. The GOCI surface reflectance showed very similar magnitude and temporal patterns with the in-situ measurements and the MODIS reflectance. The GOCI surface reflectance was slightly higher than the in-situ measurement and MODIS reflectance by 0.01 to 0.06, which might be due to the different viewing angles. Anisotropic effect in the GOCI hourly reflectance needs to be further normalized during the following cloud-free compositing.

KCI등재

10An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

저자 : Woohyun Jeon , Yongil Kim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 34권 1호 발행 연도 : 2018 페이지 : pp. 141-150 (10 pages)

다운로드

(기관인증 필요)

초록보기

Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기