논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> 위성영상을 활용한 낙동강 삼각주 연안사주의 면적 및 부유퇴적물 농도 변화 분석

KCI등재

위성영상을 활용한 낙동강 삼각주 연안사주의 면적 및 부유퇴적물 농도 변화 분석

Analysis on the Area of Deltaic Barrier Island and Suspended Sediments Concentration in Nakdong River Using Satellite Images

엄진아 ( Eom Jinah ) , 이창욱 ( Lee Changwook )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 33권2호
  • : 연속간행물
  • : 2017년 04월
  • : 201-211(11pages)
대한원격탐사학회지

DOI


목차

1. 서 론
2. 연구지역
3. 연구방법
4. 연구결과
5. 결론 및 토의
사 사
References

키워드 보기


초록 보기

낙동강 하구역은 인공 구조물인 하구둑, 항구의 건설 및 일부 지역의 매립과 인위적인 수로 변경 등에 의해 기존의 사주가 소멸되거나, 새로운 사주가 생성되는 등의 면적 변화를 초래하고 있다. 낙동강 유역의 사주 변화는 연안사주의 기능에 영향을 줄 수 있고, 환경 변화를 초래하고 있다. 따라서 낙동강 하구의 면적 변화를 관측하는 것은 중요한 연구로 자리 잡고 있다. 이 연구에서는 Landsat TM/ETM+ 영상을 기반으로 낙동강 하구의 연안사주의 면적 및 부유퇴적물에 대하여 장기적인 변화를 분석하였다. 그 결과, 연간 해안선 변화율은 진우도는 약 5 m/yr 이하, 신자도는 약 50 m/yr이며, 도요등은 북-남 방향은 20 m/yr, 동-서 방향은 -20 ~ 10 m/yr 이다. 부유퇴적물 농도는 진우도와 신자도 부근에서 최대 25 g/m3 값을 가지는 반면에, 신자도와 도요등 부근에서는 최대 40 g/m3 농도를 가진다. 그 결과 진우도는 면적 변화 및 부유퇴적물 농도 변화량이 적으며 신자도와 도요등은 면적 변화량과 부유퇴적물 농도 변화량은 크다. 모든 자료를 활용하여 연안 사주 면적 변화와 부유퇴적물 농도 간의 상관관계를 분석한 결과, 피어슨 계수 값이 0.36을 가지며, 겨울 자료의 경우 0.32의 값을 가진다. 즉, 부유퇴적물 변화량이 연안 사주 면적 변화에 영향을 미치는 것으로 사료된다. 하지만 추후에는 정밀 고도 측량자료 등을 활용한 검증이 필요하다. 이러한 연구는 연안 관리 및 환경 변화에 의한 연안 모니터링 연구에 활용 될 수 있다.
The estuary in Nakdong River has changes by the construction of harbors, land reclamation and artificial waterway changes. These results lead to changes of extinction and creation of deltaic barrier island. The deltaic barrier island changes in the Nakdong River estuary affect the function of the barrier islands and cause environmental changes. Therefore, it is important to monitor the changes in the area of the Nakdong estuary. In this study, long-term changes of the area and suspended sediment of deltaic barrier island in the Nakdong River estuary were analyzed using Landsat TM/ETM+ images. As a result, end point rate (EPR) values of shoreline in Jinwoodo and Sinjado are about 5m/yr and about 50 m/yr, respectively. The EPR values of north-south and east-west direction in Doyodeung are 20 m/yr and -20 ~ 10 m/yr. The suspended sediment concentration (SSC) has a maximum value of 25 g/m3 in the vicinity of Jinwoodo and Sinjado, while it has a maximum concentration of 40 g/m3 in the vicinity of Shinjido and Doyodeung. In other words, the area and the SSC change are small in Jinwoodo, and the area change and the SSC variation are large in Sinjado and Doyodeung. As a result of analysis of correlation between area change and SSC variation using all data, the Pearson coefficient value (r) is 0.36 and it is 0.32 in winter data. In other words, it is considered that the SSC variation affects the deltatic barrier island area change. However, verification using advanced altimetry data is necessary in the future. These studies can be used for coastal monitoring and environmental monitoring.

UCI(KEPA)

I410-ECN-0102-2018-400-000366240

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1891


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권6호(2022년 12월) 수록논문
최근 권호 논문
| | | |

KCI등재

1핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지

저자 : 송아람 ( Ahram Song ) , 이창희 ( Changhui Lee ) , 이진민 ( Jinmin Lee ) , 한유경 ( Youkyung Han )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 991-1005 (15 pages)

다운로드

(기관인증 필요)

초록보기

위성 영상은 핵 활동 탐지와 검증을 위한 효율적인 보조자료로 핵시설과 같이 접근이 어렵고 정보가 제한된 지역에 매우 유용하다. 특히 장비의 이동 또는 시설물의 변화와 같이 핵실험을 준비하는 과정은 시계열 분석을 통해 충분히 식별 가능하다. 본 연구에서는 핵 활동과 관련된 주요 객체의 변화를 탐지하기 위하여, 다시기 영상의 의미론적 분할 결과의 차이를 이용하였다. AIHub에서 제공하는 KOMPSAT 3/3A 영상으로 구성된 객체 판독 데이터셋에서 건물, 도로, 소형 객체의 정보를 추출하여 학습하였으며, U-Net, PSPNet, Attention U-Net에 대하여 주요 파라미터를 변경하며 대상 객체 추출에 적합한 의미론적 분할 모델을 분석하였다. 의미론적 분할 결과의 차영상으로 생성된 결과에 객체 정보를 포함하여 최종 변화 탐지를 수행하였으며, 제안 기법을 임의의 변화를 포함한 시뮬레이션 영상에 적용한 결과, 변화 객체를 효과적으로 추출할 수 있었다. 본 연구에서 제시된 변화 탐지 기법을 적용하기 위해서는, 의미론적 분할의 정확도가 우선적으로 확보되어야 하는 제약이 있으나, 추후 실험 대상 지역에 대한 학습데이터셋이 증가할 수록 적용 가능한 분석 범위가 증가할 것으로 기대된다.


Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

KCI등재

2훈련자료 내 재배지역의 비율에 따른 딥러닝 모델의 성능 평가

저자 : 성선경 ( Seonkyeong Seong ) , 최재완 ( Jaewan Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1007-1014 (8 pages)

다운로드

(기관인증 필요)

초록보기

차세대중형위성(Compact Advanced Satellite 500, CAS500)은 식생, 산림, 농업 등의 분야를 포함한 다양한 목적을 위하여 사용될 수 있으며, 다양한 영역에 대한 빠른 위성영상의 취득이 가능할 것으로 기대되고 있다. 차세대중형위성을 통하여 취득된 위성영상을 농업분야에서 활용하기 위해서는 위성영상 기반 작물재배지역추출 기법에 대한 개발이 필요하다. 특히, 최근 들어 딥러닝 분야에 대한 연구가 활발해짐에 따라서, 작물재배지역 추출을 위한 딥러닝 모델의 개발 및 훈련자료 생성에 관한 연구가 필요한 실정이다. 본 연구에서는 PlanetScope 위성영상과 팜맵을 이용하여 합천군 지역의 양파 및 마늘 재배지역을 분류하고자 하였다. 특히, 효과적인 모델의 학습을 위하여 작물재배지역의 비율에 따른 모델 성능을 분석하고자 하였다. 실험에 사용한 딥러닝 모델은 Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet)을 작물재배지역 분류의 목적에 맞도록 재구성하여 활용하였다. 실험결과, 훈련자료 내 작물재배지역의 비율이 딥러닝 모델의 성능에 영향을 미치는 것을 확인하였다.


Compact Advanced Satellite 500 (CAS500) can be used for various purposes, including vegetation, forestry, and agriculture fields. It is expected that it will be possible to acquire satellite images of various areas quickly. In order to use satellite images acquired through CAS500 in the agricultural field, it is necessary to develop a satellite image-based extraction technique for crop-cultivated areas. In particular, as research in the field of deep learning has become active in recent years, research on developing a deep learning model for extracting crop cultivation areas and generating training data is necessary. This manuscript classified the onion and garlic cultivation areas in Hapcheon-gun using PlanetScope satellite images and farm maps. In particular, for effective model learning, the model performance was analyzed according to the proportion of crop-cultivated areas. For the deep learning model used in the experiment, Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet) was reconstructed to fit the purpose of crop cultivation area classification and utilized. As a result of the experiment, the ratio of crop cultivation areas in the training data affected the performance of the deep learning model.

KCI등재

3화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법

저자 : 김재인 ( Jae-in Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1015-1023 (9 pages)

다운로드

(기관인증 필요)

초록보기

착륙선의 진입-하강-착륙 과정에는 많은 환경적 및 기술적 어려움이 수반된다. 이러한 문제들을 해결하기 위한 방안으로, 최근 착륙선에는 지형상대항법 기술이 필수적으로 고려되고 있다. 지형상대항법은 하강하는 착륙선에서 수집되는 Inertial Measurement Unit (IMU) 데이터 및 영상 데이터를 기 구축된 참조 데이터와 비교하여 착륙선의 위치 및 자세를 추정하는 기술이다. 본 논문에서는 화성에서 활용할 지형상대항법 기술을 개발하기 위해 그 핵심 기술 요소로서 하강 데이터셋 생성 및 랜드마크 추출 방법을 제시한다. 제안방법은 화성착륙 시뮬레이션 궤적정보를 이용하여 하강하는 착륙선의 IMU 데이터를 생성하며, 이에 맞추어 고해상도 정사영상지도 및 수치표고모델로부터 ray tracing 기법을 통해 하강영상을 생성한다. 랜드마크 추출은 텍스쳐 정보가 부족한 화성 표면의 특성을 고려하여 영역 기반 추출 방식으로 이루어지며, 정합 정확도와 속도 향상을 위해 탐색영역 축소가 수행된다. 하강영상 생성 방법의 성능분석 결과는 제안방법으로 촬영 기하학적 조건을 만족시키는 영상 생성이 가능함을 보여주었으며, 랜드마크 추출 방법의 성능분석 결과는 제안방법을 통해 수 미터 수준의 위치 추정 정확도를 담보하면서 동시에 특징점 기반 방식만큼의 처리속도 확보가 가능함을 보여주었다.


The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

KCI등재

4무인항공기 영상을 위한 영상 매칭 기반 생성포인트 클라우드의 후처리 방안 연구

저자 : 이수암 ( Sooahm Rhee ) , 김한결 ( Han-gyeol Kim ) , 김태정 ( Taejung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1025-1034 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 건물의 포인트 클라우드를 추출할 때 발생하는 홀 영역의 보간을 통한 후처리 방안을 제안한다. 스테레오 영상 데이터에서 영상 매칭을 수행할 경우 차폐 및 건물 벽면 등의 영향으로 홀이 발생한다. 이런 영역은 추후 포인트 클라우드를 기반으로 하는 부가 산출물의 생성에 장애 요인이 될 수 있으므로, 이에 대한 효과적인 처리 기법의 적용이 필요하다. 먼저 영상 매칭을 적용하여 생성된 시차맵을 기반으로 초기 포인트 클라우드를 추출한다. 포인트 클라우드를 격자화 시키면 차폐영역 및 건물 벽면의 영향으로 발생하는 홀 영역을 확인할 수 있다. 홀 영역에 삼각망을 생성하고 삼각망 내부 값을 영역의 최소값으로 처리하는 과정을 반복하는 것으로 건물 주변의 지표면과 건물 간에 어색함 없는 보간의 수행이 가능하다. 격자화 된 데이터에서 보간 된 영역에 해당하는 위치정보를 포인트로 추가하여 새로운 포인트 클라우드를 생성한다. 보간과정 중 불필요한 점의 추가를 최소화하기 위해 초기 포인트 클라우드 영역에서 벗어나는 영역으로 보간 된 데이터는 처리하지 않았으며, 보간 된 포인트 클라우드에 적용되는 RGB 밝기값은 매칭에 사용된 스테레오 영상 중 촬영중심과 해당 픽셀이 가장 근접한 영상으로 설정하여 처리하였다. 실험 결과 제안 기법을 통해 대상영역의 포인트 클라우드 생성 후 발생하는 음영 영역이 효과적으로 처리되는 것을 확인할 수 있었다.


In this paper, we propose a post-processing method through interpolation of hole regions that occur when extracting point clouds. When image matching is performed on stereo image data, holes occur due to occlusion and building façade area. This area may become an obstacle to the creation of additional products based on the point cloud in the future, so an effective processing technique is required. First, an initial point cloud is extracted based on the disparity map generated by applying stereo image matching. We transform the point cloud into a grid. Then a hole area is extracted due to occlusion and building façade area. By repeating the process of creating Triangulated Irregular Network (TIN) triangle in the hall area and processing the inner value of the triangle as the minimum height value of the area, it is possible to perform interpolation without awkwardness between the building and the ground surface around the building. A new point cloud is created by adding the location information corresponding to the interpolated area from the grid data as a point. To minimize the addition of unnecessary points during the interpolation process, the interpolated data to an area outside the initial point cloud area was not processed. The RGB brightness value applied to the interpolated point cloud was processed by setting the image with the closest pixel distance to the shooting center among the stereo images used for matching. It was confirmed that the shielded area generated after generating the point cloud of the target area was effectively processed through the proposed technique.

KCI등재

5MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구

저자 : 김예슬 ( Yeseul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1035-1046 (12 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 토지 피복 분류를 위한 다중 해상도 자료 융합의 적용성을 평가하였다. 여기서 다중 해상도 자료 융합 모델로는 spatial time-series geostatistical deconvolution/fusion model (STGDFM)을 적용하였다. 연구 지역은 미국 Iowa 주의 일부 농경 지역으로 선정하였으며, 대상 지역의 규모를 고려해 다중 해상도 자료 융합의 입력 자료로 Moderate Resolution Imaging Spectroradiometer (MODIS) 및 Landsat 영상을 사용하였다. 이를 바탕으로 STGDFM 적용해 Landsat 영상이 결측된 시기에서 가상의 Landsat 영상을 생성하였다. 그리고 획득한 Landsat 영상과 함께 STGDFM의 융합 결과를 입력 자료로 사용해 토지 피복 분류를 수행하였다. 특히 다중 해상도 자료 융합의 적용성 평가를 위해 획득한 Landsat 영상만을 이용한 분류 결과와 Landsat 영상 및 융합 결과를 모두 이용한 분류 결과를 비교 평가하였다. 그 결과, Landsat 영상만을 이용한 분류 결과에서는 대상 지역의 주요 토지 피복인 옥수수와 콩 재배지에서 혼재 양상이 두드러지게 나타났다. 또한 건초 및 곡물 지역과 초지 지역 등 식생 피복 간의 혼재 양상도 큰 것으로 나타났다. 반면 Landsat 영상 및 융합 결과를 이용한 분류 결과에서는 옥수수와 콩 재배지의 혼재 양상과 식생 피복 간의 혼재 양상이 크게 완화되었다. 이러한 영향으로 Landsat 영상 및 융합 결과를 이용한 분류 결과에서 분류 정확도가 약 20%p 향상되었다. 이는 STGDFM을 통해 MODIS 영상이 갖는 시계열 분광 정보를 융합 결과에 반영하면서 Landsat 영상의 결측을 보완할 수 있었고, 이러한 시계열 분광 정보가 분류 과정에 결합되면서 오분류를 크게 줄일 수 있었던 것으로 판단된다. 본 연구 결과를 통해 토지 피복 분류에 다중 해상도 자료 융합이 효과적으로 적용될 수 있음을 확인하였다.


This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

KCI등재

6Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가

저자 : 지준화 ( Junhwa Chi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1047-1056 (10 pages)

다운로드

(기관인증 필요)

초록보기

지구 온난화의 중요한 지시자인 북극의 바다 얼음인 해빙은 기후 시스템, 선박의 항로 안내, 어업 활동 등에서의 중요성으로 인해 다양한 학문 분야에서 관심을 받고 있다. 최근 자동화와 효율적인 미래 예측에 대한 요구가 커지면서 인공지능을 이용한 새로운 해빙 예측 모델들이 전통적인 수치 및 통계 예측 모델을 대체하기 위해 개발되고 있다. 본 연구에서는 북극 해빙의 전역적, 지역적 특징을 학습할 수 있는 two-stream convolutional long- and short-term memory (TS-ConvLSTM) 인공지능 모델의 북극 해빙 면적이 최저를 보이는 9월에 대해 2001년부터 2021년까지 장기적인 성능 검증을 통해 향후 운용 가능한 시스템으로써의 가능성을 살펴보고자 한다. 장기 자료를 통한 검증 결과 TS-ConvLSTM 모델이 훈련자료의 양이 증가하면서 향상된 예측 성능을 보여주고 있지만, 최근 지구 온난화로 인한 단년생 해빙의 감소로 인해 해빙 농도 5-50% 구간에서는 예측력이 저하되고 있음을 보여주었다. 반면 TS-ConvLSTM에 의해 예측된 해빙 면적과 달리 Sea Ice Prediction Network에 제출된 Sea Ice Outlook (SIO)들의 해빙 면적 중간값의 경우 훈련자료가 늘어나더라도 눈에 띄는 향상을 보이지 않았다. 본 연구를 통해 TS-ConvLSTM 모델의 향후 북극 해빙 예측 시스템의 운용 가능 잠재성을 확인하였으나, 향후 연구에서는 예측이 어려운 자연 환경에서 더욱 안정성 있는 예측 시스템 개발을 위해 더 많은 시공간 변화 패턴을 학습할 수 있는 방안을 고려해야 할 것이다.


Sea ice, frozen sea water, in the Artic is a primary indicator of global warming. Due to its importance to the climate system, shipping-route navigation, and fisheries, Arctic sea ice prediction has gained increased attention in various disciplines. Recent advances in artificial intelligence (AI), motivated by a desire to develop more autonomous and efficient future predictions, have led to the development of new sea ice prediction models as alternatives to conventional numerical and statistical prediction models. This study aims to evaluate the performance of the two-stream convolutional longand short-term memory (TS-ConvLSTM) AI model, which is designed for learning both global and local characteristics of the Arctic sea ice changes, for the minimum September Arctic sea ice from 2001 to 2021, and to show the possibility for an operational prediction system. Although the TSConvLSTM model generally increased the prediction performance as training data increased, predictability for the marginal ice zone, 5-50% concentration, showed a negative trend due to increasing first-year sea ice and warming. Additionally, a comparison of sea ice extent predicted by the TS-ConvLSTM with the median Sea Ice Outlooks (SIOs) submitted to the Sea Ice Prediction Network has been carried out. Unlike the TS-ConvLSTM, the median SIOs did not show notable improvements as time passed (i.e., the amount of training data increased). Although the TSConvLSTM model has shown the potential for the operational sea ice prediction system, learning more spatio-temporal patterns in the difficult-to-predict natural environment for the robust prediction system should be considered in future work.

KCI등재

7가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구

저자 : 이유진 ( Yoo Jin Lee ) , 이수암 ( Sooahm Rhee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1057-1068 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 논문은 모바일 기반의 실시간 영상 측위 기술 개발을 목표로 사용자가 촬영한 사진과 가상의 텍스쳐 영상 간의 매칭 가능성 확인 연구로 특징점 기반의 매칭 알고리즘의 조합 성능을 비교했다. 특징점 기반의 매칭 알고리즘은 특징점(feature)을 추출하는 과정과 추출된 특징점을 설명하는 서술자(descriptor)를 계산하는 과정, 최종적으로 서로 다른 영상에서 추출된 서술자를 매칭하고, 잘못 매칭된 특징점을 제거하는 과정으로 이루어진다. 이때 매칭 알고리즘 조합을 위해, 특징점을 추출하는 과정과 서술자를 계산하는 과정을 각각 같거나 다르게 조합하여 매칭 성능을 비교하였다. 가상 실내 텍스쳐 영상을 위해 V-World 3D 데스크탑을 활용하였다. 현재 V-World 3D 데스크톱에서는 수직 · 수평적 돌출부 및 함몰부와 같은 디테일이 보강되었다. 또한, 실제 영상 텍스쳐가 입혀진 레벨로 구축되어 있어, 이를 활용하여 가상 실내 텍스쳐 데이터를 기준영상으로 구성하고, 동일한 위치에서 직접 촬영하여 실험 데이터셋을 구성하였다. 데이터셋 구축 후, 매칭 알고리즘들로 매칭 성공률과 처리 시간을 측정하였고, 이를 바탕으로 매칭 성능 향상을 위해 매칭 알고리즘 조합을 결정하였다. 본 연구에서는 매칭 기법마다 가진 특장점을 기반으로 매칭 알고리즘을 조합하여 구축한 데이터셋에 적용해 적용가능성을 확인하였고, 추가적으로 회전요소가 고려되었을 때의 성능 비교도 함께 수행하였다. 연구 결과, Scale Invariant Feature Transform (SIFT)의 feature와 descriptor 조합이 가장 매칭 성공률이 좋았지만 처리 소요 시간이 가장 큰 것을 확인할 수 있었고, Features from Accelerated Segment Test (FAST)의 feature와 Oriented FAST and Rotated BRIEF (ORB)의 descriptor 조합의 경우, SIFT-SIFT 조합과 유사한 매칭 성공률을 가지면서 처리 소요시간도 우수하였다. 나아가, FAST-ORB의 경우, 10°의 회전이 데이터셋에 적용되었을 때에도 매칭 성능이 우세함을 확인하였다. 따라서 종합적으로 가상 텍스쳐 영상과 실영상간 매칭을 위해서 FAST-ORB 조합의 매칭 알고리즘이 적합한 것을 확인할 수 있었다.


This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

KCI등재

8정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구

저자 : 신대근 ( Daegeun Shin ) , 김소명 ( Somyoung Kim ) , 박주선 ( Juseon Bak ) , 백강현 ( Kanghyun Baek ) , 홍성재 ( Sungjae Hong ) , 김재환 ( Jaehwan Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1069-1080 (12 pages)

다운로드

(기관인증 필요)

초록보기

대류권 오존은 전 세계적으로 인간과 생태계에 막대한 피해를 입히는 오염 물질이다. 국지적인 오존 문제는 발생 지역에서 바람에 의해 풍하 측으로 이동함에 따라 지역적, 전 지구적 문제가 되고 있다. 보다 효율적인 오존 모니터링을 위해서 연속적인 일중 관측이 가능한 정지궤도 위성을 이용하려는 시도가 있어왔다. 이 연구에서는 정지궤도 위성에서 관측될 대류권 오존의 연속적인 관측을 이용하여 대류권 오존 이동벡터(Tropospheric Ozone Movement Vector, TOMV) 산출을 세계 최초로 시도했다. 현재 정지궤도 위성을 이용한 대류권오존 산출물이 존재하지 않기 때문에 대기화학모델인 GEOS-Chem에서 산출된 대류권 오존 자료를 이용하였다. 산출된 오존의 이동 속도는 화학모델에 비해 높은 값이 나왔지만 오염의 이동의 방향은 매우 높은 일치성을 보여주었다. 제시된 알고리즘을 이용하면 오존의 유입 플럭스를 오존의 움직이는 속도와 방향을 이용하여 산출할 수도 있다. 이와 같은 결과는 오염물질의 이동분석에 널리 사용되는 역방향 궤적 방법의 대안으로써 오염물질의 모니터링과 예보에 보다 유용하게 사용될 수 있다. 이와 반대로 오존분포의 경계선이 불분명하면 TOMV 산출에 오차를 발생시킬 수 있기 때문에 이동에 대한 잘못된 정보를 줄 수 있는 것이 이 방법의 한계이다. 그럼에도 불구하고 TOMV 방법은 앞으로 활동하게 될 정지궤도 위성을 이용한 오염 모니터링과 예보에 진일보한 방향을 제시해줄 수 있을 것이다.


The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

KCI등재

9GACOS 모델 대기 위상 지연 보정을 활용한 SBAS-InSAR 기술 기반 울산광역시 지반 침하 탐지

저자 : 수레시크리쉬난 ( Suresh Krishnan Palanisamy Vadivel ) , 김덕진 ( Duk-jin Kim ) , 이정훈 ( Jung-hoon Lee ) , 송주영 ( Juyoung Song ) , 김준우 ( Junwoo Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1081-1089 (9 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 시계열 Small Baseline Subset (SBAS)-InSAR 기법을 이용하여 울산시의 지반 침하를 조사하였으며, 79개의 Sentinel-1 SAR 영상과 385개의 간섭도 영상(interferogram)을 사용하여 2015년 5월부터 2021년 12월 울산광역시의 지상 변위(surface displacement)를 추정하였다. 지반 침하율은 북구와 남구 삼산동 2지역에서 연 3.44 cm, 1.68 cm로 계측되었다. 또한 Generic Atmospheric Correction Online Service (GACOS)로 생성한 Zenith Total Delay (ZTD) 지도를 활용하여 unwrapping된 간섭도 위상에서 대기 지연(tropospheric delay)의 영향을 제거할 수 있는 가능성을 평가하였으며, GACOS ZTD 보정 전후의 SBAS-InSAR 지상 변위 측정의 차이가 연 1 mm미만임을 발견하였다.


This study aims to investigate and monitor the ground subsidence in Ulsan city, South Korea using time-series Small Baseline Subset (SBAS)-InSAR analysis. We used 79 Sentinel-1 SAR scenes and 385 interferograms to estimate the ground displacements at Ulsan city from May 2015 and December 2021. Two subsiding regions Buk-gu and Nam-gu Samsan-dong were found with the subsidence rate of 3.44 cm/year and 1.68 cm/year. In addition, we evaluated the possibility of removing the effect of atmospheric (tropospheric delay) phase in unwrapped phase using the Zenith Total Delay (ZTD) maps from Generic Atmospheric Correction Online Service (GACOS). We found that the difference between the SBAS-InSAR ground displacements before and after GACOS ZTD correction is less than 1 mm/year in this study.

KCI등재

10개선된 DeepResUNet과 컨볼루션 블록 어텐션 모듈의 결합을 이용한 의미론적 건물 분할

저자 : 예철수 ( Chul-soo Ye ) , 안영만 ( Young-man Ahn ) , 백태웅 ( Tae-woong Baek ) , 김경태 ( Kyung-tae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1091-1100 (10 pages)

다운로드

(기관인증 필요)

초록보기

딥러닝 기술의 진보와 함께 다양한 국내외 고해상도 원격탐사 영상의 활용이 가능함에 따라 딥러닝 기술과 원격탐사 빅데이터를 활용하여 도심 지역 건물 검출과 변화탐지에 활용하고자 하는 관심이 크게 증가하고 있다. 본 논문에서는 고해상도 원격탐사 영상의 의미론적 건물 분할을 위해서 건물 분할에 우수한 성능을 보이는DeepResUNet 모델을 기본 구조로 하고 잔차 학습 단위를 개선하고 Convolutional Block Attention Module(CBAM)을 결합한 새로운 건물 분할 모델인 CBAM-DRUNet을 제안한다. 제안한 건물 분할 모델은 WHU 데이터셋과 INRIA 데이터셋을 이용한 성능 평가에서 UNet을 비롯하여 ResUNet, DeepResUNet 대비 F1 score, 정확도, 재현율 측면에서 모두 우수한 성능을 보였다.


As deep learning technology advances and various high-resolution remote sensing images are available, interest in using deep learning technology and remote sensing big data to detect buildings and change in urban areas is increasing significantly. In this paper, for semantic building segmentation of high-resolution remote sensing images, we propose a new building segmentation model, Convolutional Block Attention Module (CBAM)-DRUNet that uses the DeepResUNet model, which has excellent performance in building segmentation, as the basic structure, improves the residual learning unit and combines a CBAM with the basic structure. In the performance evaluation using WHU dataset and INRIA dataset, the proposed building segmentation model showed excellent performance in terms of F1 score, accuracy and recall compared to ResUNet and DeepResUNet including UNet.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1고유분광특성을 이용한 남조류 원격 추정 모델 개선

저자 : 하림 ( Rim Ha ) , 남기범 ( Gibeom Nam ) , 박상현 ( Sanghyun Park ) , 강태구 ( Taegu Kang ) , 신현주 ( Hyunjoo Shin ) , 김경현 ( Kyunghyun Kim ) , 류덕희 ( Doughee Rhew ) , 이혁 ( Hyuk Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 111-123 (13 pages)

다운로드

(기관인증 필요)

초록보기

피코시아닌(phycocyanin, PC) 색소는 부영양화 된 담수역에서의 남조류를 정량하는 지표로 활용된다. 남조류의 대발생에 의한 잠재적 위험성으로인해 조기 경보 발령이 중요하지만, 혼탁한 수체 내 소량으로 추정되는 PC 농도를 정확하게 산정하는 것은 분광학적으로 매우 복잡하고 어렵다. 이를 위해 현장에서 측정 된 원격반사도로부터 PC 및 물 이외의 입자성 물질에 의한 흡수계수를 분리하여 기존 PC 농도를 추정하는 방법을 개선하여 낮은 농도에서도 향상 된 결과를 보였다. 본 연구에서 제안 된 IOPs 변환 모델 적용 결과 PC 흡수계수 R2는 0.8 이상으로 apc(620)를 적절히 재현하였다. 또한 알고리즘은 기존 널리 사용되는 반경험적 알고리즘에 비해 0.71 ≤ R2 ≤ 0.85, rRMSE ≤ 39.4 %, 그리고 RE ≤ 78.0 %로 정확도 높은 결과를 보였다. 특히, PC 농도가 50 mg/m3 이하 및 PC: Chl-a ratio가 낮은 조건에서도 잘 예측됨을 확인할 수 있었다.

KCI등재

2서버가상화 및 분산처리를 이용한 천리안해양관측위성 산출물 재처리 시스템

저자 : 양현 ( Hyun Yang ) , 유정미 ( Jeung-mi Ryu ) , 최우창 ( Woo-chang Choi ) , 한희정 ( Hee-jeong Han ) , 박영제 ( Young-je Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 125-134 (10 pages)

다운로드

(기관인증 필요)

초록보기

최근 위성 기반 윈격 탐사 기술의 발전과 더불어 대용량 위성 자료를 효율적으로 처리하기 위한 능력이 요구되고 있다. 이 연구에서는 대용량 GOCI 산출물을 효율적으로 재처리하기 위해 서버가상화와 분산 처리를 기반으로 한 GOCI 산출물 재처리 시스템(GOCI Products Re-processing System; GPRS)을 개발 하는데 집중하였다. 실험 결과 GPRS를 이용하여 메모리 및 CPU의 사용률을 각각 약 100%, 75%까지 올릴 수 있었다. 이는 제안 시스템을 통해 하드웨어 자원을 절약함과 동시에 작업 처리 속도를 향상시킬 수 있다는 것을 의미한다.

KCI등재

3OMI 위성자료를 활용한 서울 지표 이산화질소 혼합비 추정 연구

저자 : 김대원 ( Daewon Kim ) , 홍현기 ( Hyunkee Hong ) , 최원이 ( Wonei Choi ) , 박준성 ( Junsung Park ) , 양지원 ( Jiwon Yang ) , 류재용 ( Jaeyong Ryu ) , 이한림 ( Hanlim Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 135-147 (13 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 처음으로 한반도 서울지역에서 OMI (Ozone Monitoring Instrument) 센서로 관측된 대류권 이산화질소 칼럼농도를 이용하여 OMI 센서의 관측시간인 13:45에서의 월 평균 및 일별 위성 지표 이산화질소 혼합비를 추정하였다. 본 연구에서는 세 가지 회귀모델들이 이용되었다. 첫 번째 회귀모델(M1)은 OMI 대류권 이산화질소 칼럼농도와 지점 측정값과의 선형회귀를 통한 회귀계수로 구성되어있다. 두번째 회귀모델(M2)은 OMI 대류권 이산화질소 칼럼농도와 AIRS (Atmospheric Infrared Sounder) 센서로 관측한 행성경계층 높이, 온도, 압력 자료 모두가 반영된 회귀모델이다. 세 번째 회귀모델(M3M, M3D)은 다중회귀모델로서 앞서 고려된 이산화질소 칼럼농도와 행성경계층 높이와 다양한 기상변수를 추가적으로 반영하는 회귀모델이다. 본 연구에서는 2009년에서 2011년까지를 회귀모델의 훈련기간으로 하여서 각 회귀식의 회귀계수를 도출하였으며 2012년도는 검증기간으로서 훈련기간에 도출된 회귀모델들의 성능을 평가하였다. 회귀모델들로 추정된 월 평균 지표 이산화질소 혼합비와 지점 관측소에서 지점 측정장비로 측정된 월평균 지표 이산화질소 혼합비와 가장 높은 상관성(avg. R = 0.77)을 보이는 회귀분석방법은 다중회귀분석 방법(M3M)이다. 또한, 회귀모델들로 추정된 13:45에서의 일 지표 이산화질소 혼합비와 지점 관측소에서 지점장비로 측정된 지표 이산화질소 혼합비와 가장 좋은 상관성(avg. R = 0.55)을 보인 것도 다중회귀분석방법(M3D)이다. 회귀모델들로 추정된 지표 이산화질소 혼합비는 지점 측정값에 비해 과소추정 되는 경향이 나타났다. 회귀모델들로 추정된 지표 이산화질소 혼합비를 평가하기 위해 지점 측정값과의 RMSE (Root Mean Square Error), mean bias, MAE (Mean Absolute Error), percent difference와 같은 통계분석을 실시하였다. 본 연구는 위성을 통한 지표 이산화질소 혼합비 산출 가능성을 보여준다.

KCI등재

4위성영상 시공간 융합기법의 계절별 NDVI 예측에서의 응용

저자 : 김예화 , 주경영 , 성선용 , 이동근

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 149-158 (10 pages)

다운로드

(기관인증 필요)

초록보기

시간해상도와 공간해상도가 높은 영상 자료는 효과적인 식생의 모니터링을 위해서 필수적이다. 하지만 단일 센서를 통한 영상은 공간해상도와 시간해상도가 높은 자료를 동시에 제공할 수 없는 한계점이 있다. 최근에는 위성영상의 공간적 해상도를 높이고 시간해상도를 보완하기 위해서 시공간 융합연구가 진행되고 있다. 그 중에서도 FSDAF(Flexible spatiotemporal data fusion) 방법론은 위성영상의 각 밴드를 융합하는 방법으로 적절한 것으로 나타났다. 본 연구에서는 FSDAF 융합기법을 활용하여 MODIS NDVI와 Landsat 영상으로 계산한 NDVI를 융합 후 검증을 실시하였으며 식생 계절 모니터링에서의 활용가능성을 제시하였다. 그 결과, 1월부터 12월까지 융합을 통해 NDVI 예측한 영상은 활엽수, 침엽수, 농지의 계절적인 특징을 잘 반영하고 있었다. 융합된 결과의 검증을 위하여 8월과 10월의 예측한 NDVI와 실제 값(Landsat NDVI) 간의 RMSE 값을 계산한 결과 각각 0.049와 0.085, 상관계수는 0.765, 0.642로 비교적 일치한 것으로 나타났다. 본 연구에서 활용된 FSDAF 시공간 융합 기법은 픽셀기반의 융합기법으로 다양한 공간스케일의 영상과도 융합 가능할 것이며 다양한 식생 관련 연구에 활용될 것으로 기대된다.

KCI등재

5영상센서신호의 잡음분석을 이용한 위성용 전자광학탑재체의 신호대잡음비 개선 방법

저자 : 박종억 ( Jong-euk Park ) , 이기준 ( Kijun Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 159-169 (11 pages)

다운로드

(기관인증 필요)

초록보기

위성용 전자광학탑재체는 제한된 소모전력 및 우주방사선과 같은 사용 환경에 의해 설계부터 특별한 요구사항을 가지고 있으며, 획득 영상의 품질은 주로 GSD (Ground Sampled Distance), 신호대잡음비 (SNR, Signal to Noise Ratio), MTF (Modulation Transfer Function)에 따라 좌우된다. 영상센서의 출력신호에 포함된 잡음 감소를 통한 신호대잡음비 개선을 위하여, 센서에 추가된 프리픽셀(Pre-pixel) 및 다크픽셀(Dark-pixel)을 사용하여 CDS (Corrective Double Sampling) 방식을 통해 영상 센서의 잡음 성분을 포함한 오프셋 신호(Offset Signal)를 제거하는 아날로그 신호처리(ASP, Analog Signal Processor) 방법을 제안한다. 또한 센서 제어시스템에서는 영상의 불균일성 처리를 위해 제어시스템의 출력 포트별 게인(Gain), 오프셋, 및 센서의 화소별 특성을 반영한 다양한 방식에 의한 보정 방법이 적용된다. 본 논문에서는 이상 설명한 여러 가지 잡음 개선방법을 시스템 설계 및 운영에 적용하여 위성탑재용 전자광학카메라의 신호대잡음비 향상 방법을 제안하고, 실험을 통해 검증한다.

KCI등재

6MODIS AOD를 이용한 지상 시정 산출

저자 : 박준영 ( Jun-young Park ) , 권태영 ( Tae-yong Kwon ) , 이재용 ( Jae-yong Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 171-187 (17 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 위성의 AOD를 이용하여 지면 시정을 산출하는 방법을 제시했다. 시정을 산출하기 위해서는 에어로졸의 분포 고도가 필요하다. 이 연구에서는 두 가지 에어로졸의 분포 고도를 이용하여 시정을 산출하였다. 하나는 대기층이 분리되어 나타나는 경우로 물리적으로 아래와 위층이 완전히 분리되어 있는 경우를 의미한다. 이 경우 분리된 층의 상한 고도를 에어로졸 층 고도(Aerosol Layer Height: ALH)로 가정하였으며 상대습도의 연직분포에서 뚜렷한 최소값이 나타나는 고도로부터 찾았다. 다른 하나는 분리된층이 존재하지 않은 경우를 의미한다. 이 경우 행성 경계층 고도(Planetary Boundary Layer Height: PBLH)를 사용하였다. 이 두 고도는 RDAPS 예측장 자료로부터 산출되었다. 따라서 시정은 MODIS AOD와 PBLH/ALH로부터 추정하였다. 여기서 ALH를 사용하는 경우 Koschmieder`s Law를 이용하였으며 PBLH를 사용하는 경우 경험적 관계식을 이용하였다. 추정 시정을 검증하기 위해 2015~2016년 봄철에 목측 9개와 PWD22 17개 지점의 시정 자료를 사용하였다. 추정시정의 검증에서 검증 값은 지점, 년도, 오전(Terra)/ 오후(Aqua)에 따라 상당한 차이가 있었다. 이 중 2016년 Terra위성을 이용한 중서부 지역 지점들의 검증은 가장 좋은 결과를 보였다. 검증 결과를 요약하면 상관계수는 0.65보다 높았고, 낮은 시정에서 RMSE는 3.62km, ME는 2.29 km 보다 낮았다. 그리고 POD는 0.65보다 높았고, FAR은 0.5보다 낮았다. 이러한 검증 결과는 낮은 시정의 데이터 수가 많을수록 좋아졌다.

KCI등재

7텍스트 마이닝 기법을 이용한 환경 분야의 ICT 활용 연구 동향 분석

저자 : 박보영 ( Boyoung Park ) , 오관영 ( Kwan-young Oh ) , 이정호 ( Jung-ho Lee ) , 윤정호 ( Jung-ho Yoon ) , 이승국 ( Lee Seung Kuk ) , 이명진 ( Moung-jin Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 189-199 (11 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 텍스트 마이닝 기법을 활용하여 환경 분야에서 ICT의 활용 연구동향을 정량적으로 분석 하였다. 이를 위해 환경 분야 키워드 38개, ICT 관련 키워드 16개를 바탕으로 국가과학기술정보센터(NDSL)에서 최근 20년(1996년-2015년)의 논문 359편을 수집하였다. 해당 논문을 대상으로 환경 분야 및 ICT 관련 자연어를 처리하여 말뭉치(Corpus)단위로 분류체계를 재구성하였다. 전술된 분류체계의 키워드를 바탕으로 텍스트 마이닝 분석 기법인 빈도 분석, 키워드 분석, 키워드 간 연관규칙을 확인하였다. 그 결과 `환경 일반` 및 `기후` 분야의 키워드 출현 빈도가 전체의 77 %, ICT는 `공공융합서비스` 및 `산업융합서비스`가 약 30 %의 비율을 차지하였다. 시계열 분석을 통해 환경 분야에서의 ICT 활용 연구는 최근 5년(2011년-2015년)사이에 급증하여 과거(1996년-2010년)과 비교하여 약 2배 이상 관련 연구가 증가된 것으로 나타났다. 키워드간 연관 규칙을 생성하여 환경 분야를 기준으로 나타내었을 때, `환경 일반`은 16개, `기후`는 `14`개의 ICT 기반 기술을 주로 활용하고 있는 것으로 확인하였다.

KCI등재

8위성영상을 활용한 낙동강 삼각주 연안사주의 면적 및 부유퇴적물 농도 변화 분석

저자 : 엄진아 ( Eom Jinah ) , 이창욱 ( Lee Changwook )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 201-211 (11 pages)

다운로드

(기관인증 필요)

초록보기

낙동강 하구역은 인공 구조물인 하구둑, 항구의 건설 및 일부 지역의 매립과 인위적인 수로 변경 등에 의해 기존의 사주가 소멸되거나, 새로운 사주가 생성되는 등의 면적 변화를 초래하고 있다. 낙동강 유역의 사주 변화는 연안사주의 기능에 영향을 줄 수 있고, 환경 변화를 초래하고 있다. 따라서 낙동강 하구의 면적 변화를 관측하는 것은 중요한 연구로 자리 잡고 있다. 이 연구에서는 Landsat TM/ETM+ 영상을 기반으로 낙동강 하구의 연안사주의 면적 및 부유퇴적물에 대하여 장기적인 변화를 분석하였다. 그 결과, 연간 해안선 변화율은 진우도는 약 5 m/yr 이하, 신자도는 약 50 m/yr이며, 도요등은 북-남 방향은 20 m/yr, 동-서 방향은 -20 ~ 10 m/yr 이다. 부유퇴적물 농도는 진우도와 신자도 부근에서 최대 25 g/m3 값을 가지는 반면에, 신자도와 도요등 부근에서는 최대 40 g/m3 농도를 가진다. 그 결과 진우도는 면적 변화 및 부유퇴적물 농도 변화량이 적으며 신자도와 도요등은 면적 변화량과 부유퇴적물 농도 변화량은 크다. 모든 자료를 활용하여 연안 사주 면적 변화와 부유퇴적물 농도 간의 상관관계를 분석한 결과, 피어슨 계수 값이 0.36을 가지며, 겨울 자료의 경우 0.32의 값을 가진다. 즉, 부유퇴적물 변화량이 연안 사주 면적 변화에 영향을 미치는 것으로 사료된다. 하지만 추후에는 정밀 고도 측량자료 등을 활용한 검증이 필요하다. 이러한 연구는 연안 관리 및 환경 변화에 의한 연안 모니터링 연구에 활용 될 수 있다.

KCI등재

9GOCI를 활용한 한반도 주변해역 적조 감시 체계 연구

저자 : 신지선 ( Jisun Shin ) , 민지은 ( Jee-eun Min ) , 유주형 ( Joo-hyung Ryu )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 213-230 (18 pages)

다운로드

(기관인증 필요)

초록보기

위성기반 적조 탐지 알고리즘들은 특정 해역, 적조 종을 중심으로 개발되어 왔다. 하지만 한반도 주변해역의 빠르고 정확한 적조 감시를 위해서는 한반도 주변의 전 발생 해역과 다양한 적조 종을 대상으로 한 연구가 필수적이다. 본 연구에서는 한반도 주변해역을 대상으로 GOCI 영상을 활용하여 적조 영역의 스펙트럼 특성과 위성기반 적조 탐지 알고리즘의 적합성을 분석하였다. 그 결과, 적조 종들의 클로로필 함량과 적조가 출현하는 해역의 탁도에 따라서 스펙트럼 특성이 달라졌다. 또한 기존 적조 탐지 알고리즘을 GOCI 영상에 적용하였으며, 이를 통해 기존 임계값으로는 적조 영역 추출에 한계가 있음을 알 수 있었다. 이를 개선하기 위해 적조 종들을 클로로필 함량의 차이에 따라 두 그룹으로 나누어 적조 감시 체계를 제시하였다. 총5 단계를 거쳐 적조 영역과 비적조 영역을 구분하였으며, 적조 속보를 기준으로 했을 경우 최종 추출된 적조 영역이 기존 알고리즘으로 추출된 영역에 비해 적절한 결과를 나타냈다. 이러한 적조 감시 체계를 활용한다면 한반도 주변의 모든 해역과 다양한 적조 종에 대한 빠르고 정확한 감시로 인해 효율적인 적조 감시가 가능할 것이다.

KCI등재

1011 μm 휘도온도와 11-12 μm 휘도온도차의 상관성 분석을 활용한 해빙탐지 동적임계치 결정

저자 : 진동현 ( Donghyun Jin ) , 이경상 ( Kyeong-sang Lee ) , 최성원 ( Sungwon Choi ) , 서민지 ( Minji Seo ) , 이다래 ( Darae Lee ) , 권채영 ( Chaeyoung Kwon ) , 김홍희 ( Honghee Kim ) , 이은경 ( Eunkyung Lee ) , 한경수 ( Kyung-soo Han )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 2호 발행 연도 : 2017 페이지 : pp. 243-248 (6 pages)

다운로드

(기관인증 필요)

초록보기

지구 기후시스템의 중요구성인자인 해빙은 극지방과 고위도에 분포하는 특성상 위성을 통한 탐지가 활발히 수행되고 있다. 위성자료를 이용한 해빙탐지기법은 반사도와 휘도온도자료를 이용하며, 많은 연구에서 휘도온도자료를 통해 산출된 Ice Surface Temperature (IST)를 활용한 기법인 Moderate-Resolution Imaging Spectroradiometer (MODIS)의 해빙탐지기법을 활용하고 있다. 본 연구에서는 IST산출과정이 생략된 단순하고 효율적인 동적임계값 기법을 활용한 해빙탐지기법을 제시하고자 한다. 동적임계값을 지정하기 위하여 해수의 어는점 이하의 화소를 대상으로 MODIS IST와 MODIS 11μm 채널의 휘도 온도, Brightness Temperature Difference (BTD: T11μm-T12μm)의 상호관계를 분석하였다. 분석 결과, 세수치의 관계가 선형의 특징을 나타내었으며 이를 활용하여 임계값을 지정하였다. 청천역에서 지정한 임계값을 MODIS 11 μm 채널에 적용하여 해빙을 탐지하였다. 또한, 본 연구의 해빙탐지기법의 성능을 검증하기 위해 MODIS Sea ice extent를 이용하여 정확도를 분석하였으며 그 결과, Producer Accuracy (PA) 99%이상의 높은 정확도를 보였다.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기