논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> Monitoring Mount Sinabung in Indonesia Using Multi- Temporal InSAR

KCI등재

Monitoring Mount Sinabung in Indonesia Using Multi- Temporal InSAR

Chang-wook Lee , Zhong Lu , Jin Woo Kim
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 33권1호
  • : 연속간행물
  • : 2017년 02월
  • : 37-46(10pages)
대한원격탐사학회지

DOI


목차

1. Introduction
2. Data processing
3. Results
4. Discussion and Conclusion
Acknowledgment
References

키워드 보기


초록 보기

Sinabung volcano in Indonesia was formed due to the subduction between the Eurasian and Indo-Australian plates along the Pacific Ring of Fire. After being dormant for about 400 years, Sinabung volcano erupted on the 29th of August, 2010 and most recently on the 1st of November, 2016. We measured the deformation of Sinabung volcano using Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) interferometric synthetic aperture radar (InSAR) images acquired from February 2007 to January 2011. Based on multi-temporal InSAR processing, we mapped the ground surface deformation before, during, and after the 2010 eruption with time-series InSAR technique. During the 3 years before the 2010 eruption, the volcano inflated at an average rate of ~1.7 cm/yr with a markedly higher rate of 6.6 cm/yr during the 6 months prior to the 2010 eruption. The inflation was constrained to the top of the volcano. From the 2010 eruption to January 2011, the volcano subsided by approximately 3 cm (~6 cm/yr). We interpreted that the inflation was due to magma accumulation in a shallow reservoir beneath Sinabung. The deflation was attributed to magma withdrawal from the shallow reservoir during the eruption as well as thermo-elastic compaction of erupted material. This result demonstrates once again the utility of InSAR for volcano monitoring.

UCI(KEPA)

I410-ECN-0102-2018-400-000455173

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1891


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권6호(2022년 12월) 수록논문
최근 권호 논문
| | | |

KCI등재

1핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지

저자 : 송아람 ( Ahram Song ) , 이창희 ( Changhui Lee ) , 이진민 ( Jinmin Lee ) , 한유경 ( Youkyung Han )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 991-1005 (15 pages)

다운로드

(기관인증 필요)

초록보기

위성 영상은 핵 활동 탐지와 검증을 위한 효율적인 보조자료로 핵시설과 같이 접근이 어렵고 정보가 제한된 지역에 매우 유용하다. 특히 장비의 이동 또는 시설물의 변화와 같이 핵실험을 준비하는 과정은 시계열 분석을 통해 충분히 식별 가능하다. 본 연구에서는 핵 활동과 관련된 주요 객체의 변화를 탐지하기 위하여, 다시기 영상의 의미론적 분할 결과의 차이를 이용하였다. AIHub에서 제공하는 KOMPSAT 3/3A 영상으로 구성된 객체 판독 데이터셋에서 건물, 도로, 소형 객체의 정보를 추출하여 학습하였으며, U-Net, PSPNet, Attention U-Net에 대하여 주요 파라미터를 변경하며 대상 객체 추출에 적합한 의미론적 분할 모델을 분석하였다. 의미론적 분할 결과의 차영상으로 생성된 결과에 객체 정보를 포함하여 최종 변화 탐지를 수행하였으며, 제안 기법을 임의의 변화를 포함한 시뮬레이션 영상에 적용한 결과, 변화 객체를 효과적으로 추출할 수 있었다. 본 연구에서 제시된 변화 탐지 기법을 적용하기 위해서는, 의미론적 분할의 정확도가 우선적으로 확보되어야 하는 제약이 있으나, 추후 실험 대상 지역에 대한 학습데이터셋이 증가할 수록 적용 가능한 분석 범위가 증가할 것으로 기대된다.


Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

KCI등재

2훈련자료 내 재배지역의 비율에 따른 딥러닝 모델의 성능 평가

저자 : 성선경 ( Seonkyeong Seong ) , 최재완 ( Jaewan Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1007-1014 (8 pages)

다운로드

(기관인증 필요)

초록보기

차세대중형위성(Compact Advanced Satellite 500, CAS500)은 식생, 산림, 농업 등의 분야를 포함한 다양한 목적을 위하여 사용될 수 있으며, 다양한 영역에 대한 빠른 위성영상의 취득이 가능할 것으로 기대되고 있다. 차세대중형위성을 통하여 취득된 위성영상을 농업분야에서 활용하기 위해서는 위성영상 기반 작물재배지역추출 기법에 대한 개발이 필요하다. 특히, 최근 들어 딥러닝 분야에 대한 연구가 활발해짐에 따라서, 작물재배지역 추출을 위한 딥러닝 모델의 개발 및 훈련자료 생성에 관한 연구가 필요한 실정이다. 본 연구에서는 PlanetScope 위성영상과 팜맵을 이용하여 합천군 지역의 양파 및 마늘 재배지역을 분류하고자 하였다. 특히, 효과적인 모델의 학습을 위하여 작물재배지역의 비율에 따른 모델 성능을 분석하고자 하였다. 실험에 사용한 딥러닝 모델은 Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet)을 작물재배지역 분류의 목적에 맞도록 재구성하여 활용하였다. 실험결과, 훈련자료 내 작물재배지역의 비율이 딥러닝 모델의 성능에 영향을 미치는 것을 확인하였다.


Compact Advanced Satellite 500 (CAS500) can be used for various purposes, including vegetation, forestry, and agriculture fields. It is expected that it will be possible to acquire satellite images of various areas quickly. In order to use satellite images acquired through CAS500 in the agricultural field, it is necessary to develop a satellite image-based extraction technique for crop-cultivated areas. In particular, as research in the field of deep learning has become active in recent years, research on developing a deep learning model for extracting crop cultivation areas and generating training data is necessary. This manuscript classified the onion and garlic cultivation areas in Hapcheon-gun using PlanetScope satellite images and farm maps. In particular, for effective model learning, the model performance was analyzed according to the proportion of crop-cultivated areas. For the deep learning model used in the experiment, Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet) was reconstructed to fit the purpose of crop cultivation area classification and utilized. As a result of the experiment, the ratio of crop cultivation areas in the training data affected the performance of the deep learning model.

KCI등재

3화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법

저자 : 김재인 ( Jae-in Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1015-1023 (9 pages)

다운로드

(기관인증 필요)

초록보기

착륙선의 진입-하강-착륙 과정에는 많은 환경적 및 기술적 어려움이 수반된다. 이러한 문제들을 해결하기 위한 방안으로, 최근 착륙선에는 지형상대항법 기술이 필수적으로 고려되고 있다. 지형상대항법은 하강하는 착륙선에서 수집되는 Inertial Measurement Unit (IMU) 데이터 및 영상 데이터를 기 구축된 참조 데이터와 비교하여 착륙선의 위치 및 자세를 추정하는 기술이다. 본 논문에서는 화성에서 활용할 지형상대항법 기술을 개발하기 위해 그 핵심 기술 요소로서 하강 데이터셋 생성 및 랜드마크 추출 방법을 제시한다. 제안방법은 화성착륙 시뮬레이션 궤적정보를 이용하여 하강하는 착륙선의 IMU 데이터를 생성하며, 이에 맞추어 고해상도 정사영상지도 및 수치표고모델로부터 ray tracing 기법을 통해 하강영상을 생성한다. 랜드마크 추출은 텍스쳐 정보가 부족한 화성 표면의 특성을 고려하여 영역 기반 추출 방식으로 이루어지며, 정합 정확도와 속도 향상을 위해 탐색영역 축소가 수행된다. 하강영상 생성 방법의 성능분석 결과는 제안방법으로 촬영 기하학적 조건을 만족시키는 영상 생성이 가능함을 보여주었으며, 랜드마크 추출 방법의 성능분석 결과는 제안방법을 통해 수 미터 수준의 위치 추정 정확도를 담보하면서 동시에 특징점 기반 방식만큼의 처리속도 확보가 가능함을 보여주었다.


The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

KCI등재

4무인항공기 영상을 위한 영상 매칭 기반 생성포인트 클라우드의 후처리 방안 연구

저자 : 이수암 ( Sooahm Rhee ) , 김한결 ( Han-gyeol Kim ) , 김태정 ( Taejung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1025-1034 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 건물의 포인트 클라우드를 추출할 때 발생하는 홀 영역의 보간을 통한 후처리 방안을 제안한다. 스테레오 영상 데이터에서 영상 매칭을 수행할 경우 차폐 및 건물 벽면 등의 영향으로 홀이 발생한다. 이런 영역은 추후 포인트 클라우드를 기반으로 하는 부가 산출물의 생성에 장애 요인이 될 수 있으므로, 이에 대한 효과적인 처리 기법의 적용이 필요하다. 먼저 영상 매칭을 적용하여 생성된 시차맵을 기반으로 초기 포인트 클라우드를 추출한다. 포인트 클라우드를 격자화 시키면 차폐영역 및 건물 벽면의 영향으로 발생하는 홀 영역을 확인할 수 있다. 홀 영역에 삼각망을 생성하고 삼각망 내부 값을 영역의 최소값으로 처리하는 과정을 반복하는 것으로 건물 주변의 지표면과 건물 간에 어색함 없는 보간의 수행이 가능하다. 격자화 된 데이터에서 보간 된 영역에 해당하는 위치정보를 포인트로 추가하여 새로운 포인트 클라우드를 생성한다. 보간과정 중 불필요한 점의 추가를 최소화하기 위해 초기 포인트 클라우드 영역에서 벗어나는 영역으로 보간 된 데이터는 처리하지 않았으며, 보간 된 포인트 클라우드에 적용되는 RGB 밝기값은 매칭에 사용된 스테레오 영상 중 촬영중심과 해당 픽셀이 가장 근접한 영상으로 설정하여 처리하였다. 실험 결과 제안 기법을 통해 대상영역의 포인트 클라우드 생성 후 발생하는 음영 영역이 효과적으로 처리되는 것을 확인할 수 있었다.


In this paper, we propose a post-processing method through interpolation of hole regions that occur when extracting point clouds. When image matching is performed on stereo image data, holes occur due to occlusion and building façade area. This area may become an obstacle to the creation of additional products based on the point cloud in the future, so an effective processing technique is required. First, an initial point cloud is extracted based on the disparity map generated by applying stereo image matching. We transform the point cloud into a grid. Then a hole area is extracted due to occlusion and building façade area. By repeating the process of creating Triangulated Irregular Network (TIN) triangle in the hall area and processing the inner value of the triangle as the minimum height value of the area, it is possible to perform interpolation without awkwardness between the building and the ground surface around the building. A new point cloud is created by adding the location information corresponding to the interpolated area from the grid data as a point. To minimize the addition of unnecessary points during the interpolation process, the interpolated data to an area outside the initial point cloud area was not processed. The RGB brightness value applied to the interpolated point cloud was processed by setting the image with the closest pixel distance to the shooting center among the stereo images used for matching. It was confirmed that the shielded area generated after generating the point cloud of the target area was effectively processed through the proposed technique.

KCI등재

5MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구

저자 : 김예슬 ( Yeseul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1035-1046 (12 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 토지 피복 분류를 위한 다중 해상도 자료 융합의 적용성을 평가하였다. 여기서 다중 해상도 자료 융합 모델로는 spatial time-series geostatistical deconvolution/fusion model (STGDFM)을 적용하였다. 연구 지역은 미국 Iowa 주의 일부 농경 지역으로 선정하였으며, 대상 지역의 규모를 고려해 다중 해상도 자료 융합의 입력 자료로 Moderate Resolution Imaging Spectroradiometer (MODIS) 및 Landsat 영상을 사용하였다. 이를 바탕으로 STGDFM 적용해 Landsat 영상이 결측된 시기에서 가상의 Landsat 영상을 생성하였다. 그리고 획득한 Landsat 영상과 함께 STGDFM의 융합 결과를 입력 자료로 사용해 토지 피복 분류를 수행하였다. 특히 다중 해상도 자료 융합의 적용성 평가를 위해 획득한 Landsat 영상만을 이용한 분류 결과와 Landsat 영상 및 융합 결과를 모두 이용한 분류 결과를 비교 평가하였다. 그 결과, Landsat 영상만을 이용한 분류 결과에서는 대상 지역의 주요 토지 피복인 옥수수와 콩 재배지에서 혼재 양상이 두드러지게 나타났다. 또한 건초 및 곡물 지역과 초지 지역 등 식생 피복 간의 혼재 양상도 큰 것으로 나타났다. 반면 Landsat 영상 및 융합 결과를 이용한 분류 결과에서는 옥수수와 콩 재배지의 혼재 양상과 식생 피복 간의 혼재 양상이 크게 완화되었다. 이러한 영향으로 Landsat 영상 및 융합 결과를 이용한 분류 결과에서 분류 정확도가 약 20%p 향상되었다. 이는 STGDFM을 통해 MODIS 영상이 갖는 시계열 분광 정보를 융합 결과에 반영하면서 Landsat 영상의 결측을 보완할 수 있었고, 이러한 시계열 분광 정보가 분류 과정에 결합되면서 오분류를 크게 줄일 수 있었던 것으로 판단된다. 본 연구 결과를 통해 토지 피복 분류에 다중 해상도 자료 융합이 효과적으로 적용될 수 있음을 확인하였다.


This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

KCI등재

6Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가

저자 : 지준화 ( Junhwa Chi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1047-1056 (10 pages)

다운로드

(기관인증 필요)

초록보기

지구 온난화의 중요한 지시자인 북극의 바다 얼음인 해빙은 기후 시스템, 선박의 항로 안내, 어업 활동 등에서의 중요성으로 인해 다양한 학문 분야에서 관심을 받고 있다. 최근 자동화와 효율적인 미래 예측에 대한 요구가 커지면서 인공지능을 이용한 새로운 해빙 예측 모델들이 전통적인 수치 및 통계 예측 모델을 대체하기 위해 개발되고 있다. 본 연구에서는 북극 해빙의 전역적, 지역적 특징을 학습할 수 있는 two-stream convolutional long- and short-term memory (TS-ConvLSTM) 인공지능 모델의 북극 해빙 면적이 최저를 보이는 9월에 대해 2001년부터 2021년까지 장기적인 성능 검증을 통해 향후 운용 가능한 시스템으로써의 가능성을 살펴보고자 한다. 장기 자료를 통한 검증 결과 TS-ConvLSTM 모델이 훈련자료의 양이 증가하면서 향상된 예측 성능을 보여주고 있지만, 최근 지구 온난화로 인한 단년생 해빙의 감소로 인해 해빙 농도 5-50% 구간에서는 예측력이 저하되고 있음을 보여주었다. 반면 TS-ConvLSTM에 의해 예측된 해빙 면적과 달리 Sea Ice Prediction Network에 제출된 Sea Ice Outlook (SIO)들의 해빙 면적 중간값의 경우 훈련자료가 늘어나더라도 눈에 띄는 향상을 보이지 않았다. 본 연구를 통해 TS-ConvLSTM 모델의 향후 북극 해빙 예측 시스템의 운용 가능 잠재성을 확인하였으나, 향후 연구에서는 예측이 어려운 자연 환경에서 더욱 안정성 있는 예측 시스템 개발을 위해 더 많은 시공간 변화 패턴을 학습할 수 있는 방안을 고려해야 할 것이다.


Sea ice, frozen sea water, in the Artic is a primary indicator of global warming. Due to its importance to the climate system, shipping-route navigation, and fisheries, Arctic sea ice prediction has gained increased attention in various disciplines. Recent advances in artificial intelligence (AI), motivated by a desire to develop more autonomous and efficient future predictions, have led to the development of new sea ice prediction models as alternatives to conventional numerical and statistical prediction models. This study aims to evaluate the performance of the two-stream convolutional longand short-term memory (TS-ConvLSTM) AI model, which is designed for learning both global and local characteristics of the Arctic sea ice changes, for the minimum September Arctic sea ice from 2001 to 2021, and to show the possibility for an operational prediction system. Although the TSConvLSTM model generally increased the prediction performance as training data increased, predictability for the marginal ice zone, 5-50% concentration, showed a negative trend due to increasing first-year sea ice and warming. Additionally, a comparison of sea ice extent predicted by the TS-ConvLSTM with the median Sea Ice Outlooks (SIOs) submitted to the Sea Ice Prediction Network has been carried out. Unlike the TS-ConvLSTM, the median SIOs did not show notable improvements as time passed (i.e., the amount of training data increased). Although the TSConvLSTM model has shown the potential for the operational sea ice prediction system, learning more spatio-temporal patterns in the difficult-to-predict natural environment for the robust prediction system should be considered in future work.

KCI등재

7가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구

저자 : 이유진 ( Yoo Jin Lee ) , 이수암 ( Sooahm Rhee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1057-1068 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 논문은 모바일 기반의 실시간 영상 측위 기술 개발을 목표로 사용자가 촬영한 사진과 가상의 텍스쳐 영상 간의 매칭 가능성 확인 연구로 특징점 기반의 매칭 알고리즘의 조합 성능을 비교했다. 특징점 기반의 매칭 알고리즘은 특징점(feature)을 추출하는 과정과 추출된 특징점을 설명하는 서술자(descriptor)를 계산하는 과정, 최종적으로 서로 다른 영상에서 추출된 서술자를 매칭하고, 잘못 매칭된 특징점을 제거하는 과정으로 이루어진다. 이때 매칭 알고리즘 조합을 위해, 특징점을 추출하는 과정과 서술자를 계산하는 과정을 각각 같거나 다르게 조합하여 매칭 성능을 비교하였다. 가상 실내 텍스쳐 영상을 위해 V-World 3D 데스크탑을 활용하였다. 현재 V-World 3D 데스크톱에서는 수직 · 수평적 돌출부 및 함몰부와 같은 디테일이 보강되었다. 또한, 실제 영상 텍스쳐가 입혀진 레벨로 구축되어 있어, 이를 활용하여 가상 실내 텍스쳐 데이터를 기준영상으로 구성하고, 동일한 위치에서 직접 촬영하여 실험 데이터셋을 구성하였다. 데이터셋 구축 후, 매칭 알고리즘들로 매칭 성공률과 처리 시간을 측정하였고, 이를 바탕으로 매칭 성능 향상을 위해 매칭 알고리즘 조합을 결정하였다. 본 연구에서는 매칭 기법마다 가진 특장점을 기반으로 매칭 알고리즘을 조합하여 구축한 데이터셋에 적용해 적용가능성을 확인하였고, 추가적으로 회전요소가 고려되었을 때의 성능 비교도 함께 수행하였다. 연구 결과, Scale Invariant Feature Transform (SIFT)의 feature와 descriptor 조합이 가장 매칭 성공률이 좋았지만 처리 소요 시간이 가장 큰 것을 확인할 수 있었고, Features from Accelerated Segment Test (FAST)의 feature와 Oriented FAST and Rotated BRIEF (ORB)의 descriptor 조합의 경우, SIFT-SIFT 조합과 유사한 매칭 성공률을 가지면서 처리 소요시간도 우수하였다. 나아가, FAST-ORB의 경우, 10°의 회전이 데이터셋에 적용되었을 때에도 매칭 성능이 우세함을 확인하였다. 따라서 종합적으로 가상 텍스쳐 영상과 실영상간 매칭을 위해서 FAST-ORB 조합의 매칭 알고리즘이 적합한 것을 확인할 수 있었다.


This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

KCI등재

8정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구

저자 : 신대근 ( Daegeun Shin ) , 김소명 ( Somyoung Kim ) , 박주선 ( Juseon Bak ) , 백강현 ( Kanghyun Baek ) , 홍성재 ( Sungjae Hong ) , 김재환 ( Jaehwan Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1069-1080 (12 pages)

다운로드

(기관인증 필요)

초록보기

대류권 오존은 전 세계적으로 인간과 생태계에 막대한 피해를 입히는 오염 물질이다. 국지적인 오존 문제는 발생 지역에서 바람에 의해 풍하 측으로 이동함에 따라 지역적, 전 지구적 문제가 되고 있다. 보다 효율적인 오존 모니터링을 위해서 연속적인 일중 관측이 가능한 정지궤도 위성을 이용하려는 시도가 있어왔다. 이 연구에서는 정지궤도 위성에서 관측될 대류권 오존의 연속적인 관측을 이용하여 대류권 오존 이동벡터(Tropospheric Ozone Movement Vector, TOMV) 산출을 세계 최초로 시도했다. 현재 정지궤도 위성을 이용한 대류권오존 산출물이 존재하지 않기 때문에 대기화학모델인 GEOS-Chem에서 산출된 대류권 오존 자료를 이용하였다. 산출된 오존의 이동 속도는 화학모델에 비해 높은 값이 나왔지만 오염의 이동의 방향은 매우 높은 일치성을 보여주었다. 제시된 알고리즘을 이용하면 오존의 유입 플럭스를 오존의 움직이는 속도와 방향을 이용하여 산출할 수도 있다. 이와 같은 결과는 오염물질의 이동분석에 널리 사용되는 역방향 궤적 방법의 대안으로써 오염물질의 모니터링과 예보에 보다 유용하게 사용될 수 있다. 이와 반대로 오존분포의 경계선이 불분명하면 TOMV 산출에 오차를 발생시킬 수 있기 때문에 이동에 대한 잘못된 정보를 줄 수 있는 것이 이 방법의 한계이다. 그럼에도 불구하고 TOMV 방법은 앞으로 활동하게 될 정지궤도 위성을 이용한 오염 모니터링과 예보에 진일보한 방향을 제시해줄 수 있을 것이다.


The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

KCI등재

9GACOS 모델 대기 위상 지연 보정을 활용한 SBAS-InSAR 기술 기반 울산광역시 지반 침하 탐지

저자 : 수레시크리쉬난 ( Suresh Krishnan Palanisamy Vadivel ) , 김덕진 ( Duk-jin Kim ) , 이정훈 ( Jung-hoon Lee ) , 송주영 ( Juyoung Song ) , 김준우 ( Junwoo Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1081-1089 (9 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 시계열 Small Baseline Subset (SBAS)-InSAR 기법을 이용하여 울산시의 지반 침하를 조사하였으며, 79개의 Sentinel-1 SAR 영상과 385개의 간섭도 영상(interferogram)을 사용하여 2015년 5월부터 2021년 12월 울산광역시의 지상 변위(surface displacement)를 추정하였다. 지반 침하율은 북구와 남구 삼산동 2지역에서 연 3.44 cm, 1.68 cm로 계측되었다. 또한 Generic Atmospheric Correction Online Service (GACOS)로 생성한 Zenith Total Delay (ZTD) 지도를 활용하여 unwrapping된 간섭도 위상에서 대기 지연(tropospheric delay)의 영향을 제거할 수 있는 가능성을 평가하였으며, GACOS ZTD 보정 전후의 SBAS-InSAR 지상 변위 측정의 차이가 연 1 mm미만임을 발견하였다.


This study aims to investigate and monitor the ground subsidence in Ulsan city, South Korea using time-series Small Baseline Subset (SBAS)-InSAR analysis. We used 79 Sentinel-1 SAR scenes and 385 interferograms to estimate the ground displacements at Ulsan city from May 2015 and December 2021. Two subsiding regions Buk-gu and Nam-gu Samsan-dong were found with the subsidence rate of 3.44 cm/year and 1.68 cm/year. In addition, we evaluated the possibility of removing the effect of atmospheric (tropospheric delay) phase in unwrapped phase using the Zenith Total Delay (ZTD) maps from Generic Atmospheric Correction Online Service (GACOS). We found that the difference between the SBAS-InSAR ground displacements before and after GACOS ZTD correction is less than 1 mm/year in this study.

KCI등재

10개선된 DeepResUNet과 컨볼루션 블록 어텐션 모듈의 결합을 이용한 의미론적 건물 분할

저자 : 예철수 ( Chul-soo Ye ) , 안영만 ( Young-man Ahn ) , 백태웅 ( Tae-woong Baek ) , 김경태 ( Kyung-tae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1091-1100 (10 pages)

다운로드

(기관인증 필요)

초록보기

딥러닝 기술의 진보와 함께 다양한 국내외 고해상도 원격탐사 영상의 활용이 가능함에 따라 딥러닝 기술과 원격탐사 빅데이터를 활용하여 도심 지역 건물 검출과 변화탐지에 활용하고자 하는 관심이 크게 증가하고 있다. 본 논문에서는 고해상도 원격탐사 영상의 의미론적 건물 분할을 위해서 건물 분할에 우수한 성능을 보이는DeepResUNet 모델을 기본 구조로 하고 잔차 학습 단위를 개선하고 Convolutional Block Attention Module(CBAM)을 결합한 새로운 건물 분할 모델인 CBAM-DRUNet을 제안한다. 제안한 건물 분할 모델은 WHU 데이터셋과 INRIA 데이터셋을 이용한 성능 평가에서 UNet을 비롯하여 ResUNet, DeepResUNet 대비 F1 score, 정확도, 재현율 측면에서 모두 우수한 성능을 보였다.


As deep learning technology advances and various high-resolution remote sensing images are available, interest in using deep learning technology and remote sensing big data to detect buildings and change in urban areas is increasing significantly. In this paper, for semantic building segmentation of high-resolution remote sensing images, we propose a new building segmentation model, Convolutional Block Attention Module (CBAM)-DRUNet that uses the DeepResUNet model, which has excellent performance in building segmentation, as the basic structure, improves the residual learning unit and combines a CBAM with the basic structure. In the performance evaluation using WHU dataset and INRIA dataset, the proposed building segmentation model showed excellent performance in terms of F1 score, accuracy and recall compared to ResUNet and DeepResUNet including UNet.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1Analysis of Geometric and Spatial Image Quality of KOMPSAT-3A Imagery in Comparison with KOMPSAT-3 Imagery

저자 : Nyamjargal Erdenebaatar , Jaein Kim , Taejung Kim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 1-13 (13 pages)

다운로드

(기관인증 필요)

초록보기

This study investigates the geometric and spatial image quality analysis of KOMPSAT-3A stereo pair. KOMPSAT-3A is, the latest satellite of KOMPSAT family, a Korean earth observation satellite operating in optical bands. A KOMPSAT-3A stereo pair was taken on 23 November, 2015 with 0.55 m ground sampling distance over Terrassa area of Spain. The convergence angle of KOMPSAT-3A stereo pair was estimated as 58.68˚. The investigation was assessed through the evaluation of the geopositioning analysis, image quality estimation and the accuracy of automatic Digital Surface Model (DSM) generation and compared with those of KOMPSAT-3 stereo pair with the convergence angle of 44.80˚ over the same area. First, geopositioning accuracy was tested with initial rational polynomial coefficients (RPCs) and after compensating the biases of the initial RPCs by manually collected ground control points. Then, regarding image quality, relative edge response was estimated for manually selected points visible from two stereo pairs. Both of the initial and biascompensated positioning accuracy and the quality assessment result expressed that KOMPSAT-3A images showed higher performance than those of KOMPSAT-3 images. Finally, the accuracy of DSMs generated from KOMPSAT-3A and KOMPSAT-3 stereo pairs were examined with respect to the reference LiDAR-derived DSM. The various DSMs were generated over the whole coverage of individual stereo pairs with different grid spacing and over three types of terrain; flat, mountainous and urban area. Root mean square errors of DSM from KOMPSAT-3A pair were larger than those for KOMPSAT-3. This seems due to larger convergence angle of the KOMPSAT-3A stereo pair.

KCI등재

2Potential Applications of Low Altitude Remote Sensing for Monitoring Jellyfish

저자 : Young-heon Jo , Hongsheng Bi , Jongsuk Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 15-24 (10 pages)

다운로드

(기관인증 필요)

초록보기

Jellyfish (cnidarian) are conspicuous in many marine ecosystems when in bloom. Despite their importance for the ecosystem structure and function, very few sampling programs are dedicated to sample jellyfish because they are patchily distributed and easily clogged plankton net. Although satellite remote sensing is an excellent observing tool for many phenomena in the ocean, their uses for monitoring jellyfish are not possible due to the coarse spatial resolutions. Hence, we developed the low altitude remote sensing platform to detect jellyfish in high resolutions, which allow us to monitor not only horizontal, but also vertical migration of them. Using low altitude remote sensing platform, we measured the jellyfish from the pier at the Chesapeake Biological Laboratory in Chesapeake Bay. The patterns observed included discrete patches, in rows that were aligned with waves that propagated from deeper regions, and aggregation around physical objects. The corresponding areas of exposed jellyfish on the sea surface were 0.1×104 pixel2, 0.3×104 pixel2, and 2.75×104 pixel2, respectively. Thus, the research result suggested that the migration of the jellyfish was related to the physical forcing in the sea surface.

KCI등재

3Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellitebased Precipitation Data

저자 : Yeseul Kim , No-wook Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 25-35 (11 pages)

다운로드

(기관인증 필요)

초록보기

Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models, residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

KCI등재

4Monitoring Mount Sinabung in Indonesia Using Multi- Temporal InSAR

저자 : Chang-wook Lee , Zhong Lu , Jin Woo Kim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 37-46 (10 pages)

다운로드

(기관인증 필요)

초록보기

Sinabung volcano in Indonesia was formed due to the subduction between the Eurasian and Indo-Australian plates along the Pacific Ring of Fire. After being dormant for about 400 years, Sinabung volcano erupted on the 29th of August, 2010 and most recently on the 1st of November, 2016. We measured the deformation of Sinabung volcano using Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) interferometric synthetic aperture radar (InSAR) images acquired from February 2007 to January 2011. Based on multi-temporal InSAR processing, we mapped the ground surface deformation before, during, and after the 2010 eruption with time-series InSAR technique. During the 3 years before the 2010 eruption, the volcano inflated at an average rate of ~1.7 cm/yr with a markedly higher rate of 6.6 cm/yr during the 6 months prior to the 2010 eruption. The inflation was constrained to the top of the volcano. From the 2010 eruption to January 2011, the volcano subsided by approximately 3 cm (~6 cm/yr). We interpreted that the inflation was due to magma accumulation in a shallow reservoir beneath Sinabung. The deflation was attributed to magma withdrawal from the shallow reservoir during the eruption as well as thermo-elastic compaction of erupted material. This result demonstrates once again the utility of InSAR for volcano monitoring.

KCI등재

5On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

저자 : Sang-eun Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 47-60 (14 pages)

다운로드

(기관인증 필요)

초록보기

The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations of radar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences at HV-basis and circular-basis were found to be very useful tools for mapping and monitoring near surface soil properties.

KCI등재

6Oil Spill Detection from RADARSAT-2 SAR Image Using Non-Local Means Filter

저자 : Daeseong Kim , Hyung-sup Jung

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 61-67 (7 pages)

다운로드

(기관인증 필요)

초록보기

The detection of oil spills using radar image has been studied extensively. However, most of the proposed techniques have been focused on improving detection accuracy through the advancement of algorithms. In this study, research has been conducted to improve the accuracy of oil spill detection by improving the quality of radar images, which are used as input data to detect oil spills. Thresholding algorithms were used to measure the image improvement both before and after processing. The overall accuracy increased by approximately 16%, the producer accuracy increased by 40%, and the user accuracy increased by 1.5%. The kappa coefficient also increased significantly, from 0.48 to 0.92.

KCI등재

7Accuracy Evaluation of DEM generated from Satellite Images Using Automated Geo-positioning Approach

저자 : Kwan-young Oh , Hyung-sup Jung , Moung-jin Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 69-77 (9 pages)

다운로드

(기관인증 필요)

초록보기

S The need for an automated geo-positioning approach for near real-time results and to boost cost-effectiveness has become increasingly urgent. Following this trend, a new approach to automatically compensate for the bias of the rational function model (RFM) was proposed. The core idea of this approach is to remove the bias of RFM only using tie points, which are corrected by matching with the digital elevation model (DEM) without any additional ground control points (GCPs). However, there has to be a additional evaluation according to the quality of DEM because DEM is used as a core element in this approach. To address this issue, this paper compared the quality effects of DEM in the conduct of the this approach using the Shuttle Radar Topographic Mission (SRTM) DEM with the spatial resolution of 90m. and the National Geographic Information Institute (NGII) DEM with the spatial resolution of 5m. One KOMPSAT-2 stereo-pair image acquired at Busan, Korea was used as experimental data. The accuracy was compared to 29 check points acquired by GPS surveying. After bias-compensation using the two DEMs, the Root Mean Square (RMS) errors were less than 6 m in all coordinate components. When SRTM DEM was used, the RMSE vector was about 11.2m. On the other hand, when NGII DEM was used, the RMSE vector was about 7.8 m. The experimental results showed that automated geo-positioning approach can be accomplished more effectively by using NGII DEM with higher resolution than SRTM DEM.

KCI등재

8Land Cover Classification of RapidEye Satellite Images Using Tesseled Cap Transformation (TCT)

저자 : Hogyung Moon , Taeyoung Choi , Guhyeok Kim , Nyunghee Park , Honglyun Park , Jaewan Choi

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 79-88 (10 pages)

다운로드

(기관인증 필요)

초록보기

The RapidEye satellite sensor has various spectral wavelength bands, and it can capture large areas with high temporal resolution. Therefore, it affords advantages in generating various types of thematic maps, including land cover maps. In this study, we applied a supervised classification scheme to generate highresolution land cover maps using RapidEye images. To improve the classification accuracy, object-based classification was performed by adding brightness, yellowness, and greenness bands by Tasseled Cap Transformation (TCT) and Normalized Difference Water Index (NDWI) bands. It was experimentally confirmed that the classification results obtained by adding TCT and NDWI bands as input data showed high classification accuracy compared with the land cover map generated using the original RapidEye images.

KCI등재

9An efficient ship detection method for KOMPSAT-5 synthetic aperture radar imagery based on adaptive filtering approach

저자 : Jeongin Hwang , Daeseong Kim , Hyung-sup Jung

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 89-95 (7 pages)

다운로드

(기관인증 필요)

초록보기

Ship detection in synthetic aperture radar (SAR) imagery has long been an active research topic and has many applications. In this paper, we propose an efficient method for detecting ships from SAR imagery using filtering. This method exploits ship masking using a median filter that considers maximum ship sizes and detects ships from the reference image, to which a Non-Local means (NL-means) filter is applied for speckle de-noising and a differential image created from the difference between the reference image and the median filtered image. As the pixels of the ship in the SAR imagery have sufficiently higher values than the surrounding sea, the ship detection process is composed primarily of filtering based on this characteristic. The performance test for this method is validated using KOMPSAT-5 (Korea Multi-Purpose Satellite-5) SAR imagery. According to the accuracy assessment, the overall accuracy of the region that does not include land is 76.79%, and user accuracy is 71.31%. It is demonstrated that the proposed detection method is suitable to detect ships in SAR imagery and enables us to detect ships more easily and efficiently.

KCI등재

10Tracking the Movement and Distribution of Green Tides on the Yellow Sea in 2015 Based on GOCI and Landsat Images

저자 : Seung-hwan Min , Hyun-ju Oh , Jae-dong Hwang , Young-sang Suh , Mi-ok Park , Ji-sun Shin , Wonkook Kim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 33권 1호 발행 연도 : 2017 페이지 : pp. 97-109 (13 pages)

다운로드

(기관인증 필요)

초록보기

Green tides that developed along the coast of China in 2015 were detected and tracked using vegetation indices from GOCI and Landsat images. Green tides first appeared near the Jiangsu Province on May 14 before increasing in size and number and moving northward to the Shandong Peninsula in mid-June. Typhoon Cham-hom passed through the Yellow Sea on July 12, significantly decreasing the algal population. An algae patch moved east toward Korea and on June 18 and July 4, several masses were found between the southwestern shores of Korea and Jeju Island. The floating masses found in Korean waters were concentrated at the boundary of the open sea and the Jindo cold pool, a phenomenon also observed at the boundary of coastal and offshore waters in China. Sea surface temperatures, derived from NOAA SST data, were found to play a role in generation of the green tides.

1
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기