논문 상세보기

한국정보처리학회> 정보처리학회논문지. 소프트웨어 및 데이터 공학> 병리 정보 시스템을 위한 이미지 외곽선 추출 기법 연구

KCI등재

병리 정보 시스템을 위한 이미지 외곽선 추출 기법 연구

Image Edge Detection Technique for Pathological Information System

Xie Xiao , 오상윤 ( Sangyoon Oh )
  • : 한국정보처리학회
  • : 정보처리학회논문지. 소프트웨어 및 데이터 공학 5권10호
  • : 연속간행물
  • : 2016년 10월
  • : 489-496(8pages)
정보처리학회논문지. 소프트웨어 및 데이터 공학

DOI


목차

1. 서 론
2. 관련 연구
3. 병리 이미지 처리에의 적용을 위한 외곽선 추출 알고리즘 분석 및 비교
4. 병리 이미지 분석을 위한 Canny 알고리즘 기반의 적응형 눈금자 기준 임계치 설정 기법
5. 성능 평가
6. 결론 및 향후 과제
References

키워드 보기


초록 보기

병리 정보시스템(Pathological Information System: PIS)은 매일 수천 장씩 생산되는 환자 병리 이미지를 관리하는데 활용되고 있으며, 이 이미지 정보들을 어떻게 효과적으로 처리할 것인지는 병리 정보 처리에 있어서 중요한 연구 과제 중 하나이다. 이미지의 외곽선을 추출하는 것은 병리 이미지 처리에 있어 가장 중요한 작업이지만 현재 사용되는 알고리즘은 정확도에 있어 많은 개선점을 가지므로, 본 논문에서는 이미지의 외곽선 검측에 있어서 기존의 Canny 알고리즘의 원리를 바탕으로 적응적 임계값 설정이 가능하며 눈금자를 임계값 설정의 기준으로 삼는방식을 제안하여 기존 외곽선 추출 방식보다 정확한 방식을 제안한다. 제안 방식은 기존 방식과의 비교실험을 통해 성능을 검증하였으며, 이 실험에서는 임의로 선정된 병리 이미지 군, 기존 방식으로는 식별이 제한되었던 병리 이미지 군 및 의도적으로 노이즈를 추가한 이미지 군을 대상으로 실험하였고, 실험 결과를 비교하여 제안하는 이미지 외곽선 식별 방식의 향상된 성능을 증명했다.
Thousands of pathological images are produced daily per hospital and they are stored and managed by a pathology information system (PIS). Since image edge detection is one of fundamental analysis tools for pathological images, many researches are targeted to improve accuracy and performance of image edge detection algorithm of HIS. In this paper, we propose a novel image edge detection method. It is based on Canny algorithm with adaptive threshold configuration. It also uses a dividing ruler to configure the two threshold instead of whole image to improve the detection ratio of ruler itself. To verify the effectiveness of our proposed method, we conducted empirical experiments with real pathological images(randomly selected image group, image group that was unable to detect by conventional methods, and added noise image group). The results shows that our proposed method outperforms and better detects compare to the conventional method.

UCI(KEPA)

I410-ECN-0102-2017-560-000595104

간행물정보

  • : 공학분야  > 전자공학
  • : KCI등재
  • :
  • : 월간
  • : 2287-5905
  • : 2734-0503
  • : 학술지
  • : 연속간행물
  • : 2012-2022
  • : 733


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

11권12호(2022년 12월) 수록논문
최근 권호 논문
| | | |

KCI등재

1데이터 불균형과 측정 오차를 고려한 생분해성 섬유 인장 강신도 예측 모델 개발

저자 : 박세찬 ( Se-chan Park ) , 김덕엽 ( Deok-yeop Kim ) , 서강복 ( Kang-bok Seo ) , 이우진 ( Woo-jin Lee )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 12호 발행 연도 : 2022 페이지 : pp. 489-498 (10 pages)

다운로드

(기관인증 필요)

초록보기

최근 노동 집약적인 성격의 섬유 산업에서는 인공지능을 통해 섬유 방사 공정에 들어가는 비용을 줄이고 품질을 최적화하려고 시도 하고 있다. 그러나 섬유 방사 공정은 데이터 수집에 필요한 비용이 크고 체계적인 데이터 수집 및 처리 시스템이 부족하여 축적된 데이터양이 적다. 또 방사 목적에 따라 특정한 변수에만 변화를 준 데이터만을 우선으로 수집하여 데이터 불균형이 발생하며, 물성 측정 환경의 차이로 인해 동일 방사 조건에서 수집된 샘플 간에도 오차가 존재한다. 이러한 데이터 특성들을 고려하지 않고 인공지능 모델에 활용할 경우 과적합과 성능 저하 등의 문제가 발생할 수 있다. 따라서 본 논문에서는 방사 공정 데이터 특성을 고려한 이상치 처리 기법과 데이터 증강 기법을 제안한다. 그리고 이를 기존 이상치 처리 기법 및 데이터 증강 기법과 비교하여 제안한 기법이 방사 공정 데이터에 더 적합함을 보인다. 또 원본 데이터와 제안한 기법들로 처리된 데이터를 다양한 모델에 적용하여 비교함을 통해 제안한 기법들을 사용한 모델들이 그렇지 않은 모델들에 비해 인장 강신도 예측 모델의 성능이 개선됨을 보인다.


Recently, the textile industry, which is labor-intensive, is attempting to reduce process costs and optimize quality through artificial intelligence. However, the fiber spinning process has a high cost for data collection and lacks a systematic data collection and processing system, so the amount of accumulated data is small. In addition, data imbalance occurs by preferentially collecting only data with changes in specific variables according to the purpose of fiber spinning, and there is an error even between samples collected under the same fiber spinning conditions due to difference in the measurement environment of physical properties. If these data characteristics are not taken into account and used for AI models, problems such as overfitting and performance degradation may occur. Therefore, in this paper, we propose an outlier handling technique and data augmentation technique considering the characteristics of the spinning process data. And, by comparing it with the existing outlier handling technique and data augmentation technique, it is shown that the proposed technique is more suitable for spinning process data. In addition, by comparing the original data and the data processed with the proposed method to various models, it is shown that the performance of the tensile tenacity and elongation prediction model is improved in the models using the proposed methods compared to the models not using the proposed methods.

KCI등재

2CKFont2: 한글 구성요소를 이용한 개선된 퓨샷 한글 폰트 생성 모델

저자 : 박장경 ( Jangkyoung Park ) , Ammar Ul Hassan , 최재영 ( Jaeyoung Choi )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 12호 발행 연도 : 2022 페이지 : pp. 499-508 (10 pages)

다운로드

(기관인증 필요)

초록보기

딥러닝을 이용한 한글 생성 모델에 대한 연구가 많이 진행되었으며, 최근에는 한글 1벌을 생성하기 위하여 입력되는 글자 수를 얼마나 최소화할 수 있는지(Few-Shot Learning)에 대하여 연구되고 있다. 본 논문은 28개 글자를 사용하는 CKFont (이하 CKFont1) 모델을 분석하고 개선하여 14개 글자만을 사용하는 CKFont2 모델을 제안한다. CKFont2 모델은 28글자로 51개 한글 구성요소를 추출하여 모든 한글을 생성하는 CKFont1 모델을, 24개의 구성요소(자음 14개와 모음 10개)를 포함한 14개의 글자만을 이용하여 모든 한글을 생성하는 모델로 성능을 개선하였으며, 이는 현재 알려진 모델로서는 최소한의 글자를 사용한다. 한글의 기본 자/모음으로부터 쌍자음(5), 복자음(11)/복모음(11) 등 27개를 딥러닝으로 학습하여 생성하고, 생성된 27개 구성요소를 24개의 기본 자/모음과 합한 51개 구성요소로부터 모든 한글을 자동 생성한다. zi2zi, CKFont1, MX-Font 모델 생성 결과와 비교 분석하여 성능의 우수성을 입증하였으며, 구조가 간결하고 시간과 자원이 절약되는 효율적인 모델로 한자나 태국어, 일본어에도 확장 적용이 가능하다.


A lot of research has been carried out on the Hangeul generation model using deep learning, and recently, research is being carried out how to minimize the number of characters input to generate one set of Hangul (Few-Shot Learning). In this paper, we propose a CKFont2 model using only 14 letters by analyzing and improving the CKFont (hereafter CKFont1) model using 28 letters. The CKFont2 model improves the performance of the CKFont1 model as a model that generates all Hangul using only 14 characters including 24 components (14 consonants and 10 vowels), where the CKFont1 model generates all Hangul by extracting 51 Hangul components from 28 characters. It uses the minimum number of characters for currently known models. From the basic consonants/vowels of Hangul, 27 components such as 5 double consonants, 11/11 compound consonants/vowels respectively are learned by deep learning and generated, and the generated 27 components are combined with 24 basic consonants/vowels. All Hangul characters are automatically generated from the combined 51 components. The superiority of the performance was verified by comparative analysis with results of the zi2zi, CKFont1, and MX-Font model. It is an efficient and effective model that has a simple structure and saves time and resources, and can be extended to Chinese, Thai, and Japanese.

KCI등재

3적응형 깊이 추정기를 이용한 미지 물체의 자세 예측

저자 : 송성호 ( Sungho Song ) , 김인철 ( Incheol Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 12호 발행 연도 : 2022 페이지 : pp. 509-516 (8 pages)

다운로드

(기관인증 필요)

초록보기

3차원 공간에서 물체들의 정확한 자세 예측은 실내외 환경에서 장면 이해, 로봇의 물체 조작, 자율 주행, 증강 현실 등과 같은 많은 응용 분야들에서 폭넓게 활용되는 중요한 시각 인식 기술이다. 물체들의 자세 예측을 위한 과거 연구들은 대부분 각 인식 대상 물체마다 정확한 3차원 CAD 모델을 요구한다는 한계점이 있었다. 이러한 과거 연구들과는 달리, 본 논문에서는 3차원 CAD 모델이 없어도 RGB 컬러 영상들만 이용해서 미지 물체들의 자세를 예측해낼 수 있는 새로운 신경망 모델을 제안한다. 제안 모델은 적응형 깊이 추정기인 AdaBins를 이용하여 스스로 미지 물체 자세 예측에 필요한 각 물체의 깊이 지도를 효과적으로 추정해낼 수 있다. 벤치마크 데이터 집합들을 이용한 다양한 실험들을 통해, 본 논문에서 제안한 모델의 유용성과 성능을 평가한다.


Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.

KCI등재

4가려진 사람의 자세추정을 위한 의미론적 폐색현상 증강기법

저자 : 배현재 ( Hyun-jae Bae ) , 김진평 ( Jin-pyung Kim ) , 이지형 ( Jee-hyong Lee )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 12호 발행 연도 : 2022 페이지 : pp. 517-524 (8 pages)

다운로드

(기관인증 필요)

초록보기

사람의 자세추정(Human pose estimation)은 사람의 관절 키포인트를 추출하여 자세를 추정하는 방법이다. 폐색현상(Occlusion)이 발생하면, 사람의 관절이 가려지므로 관절 키포인트 추출 성능이 낮아진다. 폐색현상은 총 3가지로 행동할 때 스스로 가려짐, 다른 사물에 의해 가려짐과 배경에 의해 가려짐으로 크게 나뉜다. 본 논문에서는 폐색현상 증강기법을 활용하여 효과적인 자세추정방법을 제안한다. 자세추정방법이 지속적으로 연구되어왔지만, 자세추정방법의 가려짐 현상에 관한 연구는 상대적으로 부족한 상태이다. 이를 해결하기 위해 저자는 사람의 관절을 타겟팅하여 의도적으로 가리는 데이터 증강기법을 제안한다. 본 논문에서의 실험 결과는 의도적으로 폐색현상 증강기법을 활용하면 폐색현상에 강인하며 성능이 올라간 것을 보여준다.

KCI등재

5무게중심과 정점 간의 거리 특성을 이용한 삼각형 메쉬의 정렬

저자 : 구민정 ( Minjeong Koo ) , 정상훈 ( Sanghun Jeong ) , 김구진 ( Ku-jin Kim )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 12호 발행 연도 : 2022 페이지 : pp. 525-530 (6 pages)

다운로드

(기관인증 필요)

초록보기

두 개의 점군(point cloud)을 정렬(alignment)하기 위해 현재까지 ICP(iterative closest point) 알고리즘이 널리 사용되고 있지만, ICP는 두 점군의 초기 방향이 크게 다를 경우 정렬에 실패하는 경우가 많다. 본 논문에서는 두 개의 삼각형 메쉬 A, B가 서로 크게 다른 초기 방향을 가질 때, 이들을 정렬하는 알고리즘을 제안한다. 메쉬 A, B에 대해 각각 가중치 무게중심(weighted centroid)을 구한 뒤, 무게중심으로부터 정점까지의 거리를 이용하여 메쉬 간에 서로 대응될 가능성이 있는 정점들을 특징점으로 설정한다. 설정된 특징점들이 대응될 수 있도록 메쉬 B를 회전한 뒤, A와 B의 정점들에 대해 RMSD(root mean square deviation)를 측정한다. RMSD가 기준치보다 작은 값을 가질 때까지 특징점을 변경하며 같은 과정을 되풀이하여 정렬된 결과를 얻는다. 실험을 통해 ICP 및 Go-ICP 알고리즘으로 정렬이 실패할 경우에도 제안된 알고리즘으로 정렬이 가능함을 보인다.


Although the iterative closest point (ICP) algorithm has been widely used to align two point clouds, ICP tends to fail when the initial orientation of the two point clouds are significantly different. In this paper, when two triangular meshes A and B have significantly different initial orientations, we present an algorithm to align them. After obtaining weighted centroids for meshes A and B, respectively, vertices that are likely to correspond to each other between meshes are set as feature points using the distance from the centroid to the vertices. After rotating mesh B so that the feature points of A and B to be close each other, RMSD (root mean square deviation) is measured for the vertices of A and B. Aligned meshes are obtained by repeating the same process while changing the feature points until the RMSD is less than the reference value. Through experiments, we show that the proposed algorithm aligns the mesh even when the ICP and Go-ICP algorithms fail.

1
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1소프트웨어 연동을 위한 아키텍처 환경 고려사항에 관한 연구

저자 : 이은서 ( Eun-ser Lee )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 5권 10호 발행 연도 : 2016 페이지 : pp. 465-470 (6 pages)

다운로드

(기관인증 필요)

초록보기

소프트웨어 공학에서 요구사항 분석은 전체 시스템의 성공률을 좌우한다. 아키텍처에서 발생되는 오류는 전체 시스템에 영향을 주게 되고, 그 결과 소프트웨어 만족도가 낮아진다. 따라서 설계 단계에서 안정적인 아키텍처와 환경을 위하여 소프트웨어 간의 상호작용과 수정할 수 있는 확인이 필요하게 된다. 본 논문에서는 아키텍처 환경 고려 사항의 요소들을 제안하고자 한다.

KCI등재

2소프트웨어 연동을 위한 아키텍처간의 구성요소 확인에 관한 연구

저자 : 이은서 ( Eun-ser Lee )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 5권 10호 발행 연도 : 2016 페이지 : pp. 471-476 (6 pages)

다운로드

(기관인증 필요)

초록보기

설계 단계에서 소프트웨어 아키텍처는 소프트웨어 품질을 좌우한다. 아키텍처 연동은 소프트웨어 품질에 영향을 주게 된다. 그 결과 소프트웨어 만족도가 낮아진다. 따라서 아키텍처에서 유연한 아키텍처와 품질을 위하여 구성요소 확인이 필요하게 된다. 본 논문에서는 아키텍처 연동의 구성 요소들을 제안하고자 한다.

KCI등재

3Spark SQL 기반 고도 분석 지원 프레임워크 설계

저자 : 정재화 ( Jaehwa Chung )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 5권 10호 발행 연도 : 2016 페이지 : pp. 477-482 (6 pages)

다운로드

(기관인증 필요)

초록보기

기업의 신속한 의사결정 및 전략적 정책 결정을 위해 빅데이터에 대한 고도 분석이 필수적으로 요구됨에 따라 대량의 데이터를 복수의 노드에 분산하여 처리하는 하둡 또는 스파크와 같은 분산 처리 플랫폼이 주목을 받고 있다. 최근 공개된 Spark SQL은 Spark 환경에서 SQL 기반의 분산 처리 기법을 지원하고 있으나, 기계학습이나 그래프 처리와 같은 반복적 처리가 요구되는 고도 분석 분야에서는 효율적 처리가 불가능한 문제가 있다. 따라서 본 논문은 이러한 문제점을 바탕으로 Spark 환경에서 고도 분석 지원을 위한 SQL 기반의 빅데이터 최적처리 엔진설계와 처리 프레임워크를 제안한다. 복수의 조건과 다수의 조인, 집계, 소팅 연산이 필요한 복합 SQL 질의를 분산/병행적으로 처리할 수 있는 최적화 엔진과 관계형 연산을 지원하는 기계학습 최적화하기 위한 프레임워크를 설계한다.

KCI등재

4클래스 초월구를 이용한 프로토타입 기반 분류

저자 : 이현종 ( Hyun-jong Lee ) , 황두성 ( Doosung Hwang )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 5권 10호 발행 연도 : 2016 페이지 : pp. 483-488 (6 pages)

다운로드

(기관인증 필요)

초록보기

본 논문은 최근접 이웃 규칙을 이용한 프로토타입을 이용하는 분류 학습을 제안한다. 훈련 데이터가 대표하는 클래스 영역을 초월구로 분할하는데 최근접 이웃규칙을 적용시키며, 초월구는 동일 클래스 데이터들만 포함시킨다. 초월구의 반지름은 가장 인접한 다른 클래스 데이터와 가장 먼 동일 클래스 데이터의 중간 거리 값으로 결정한다. 그리고 전체 훈련 데이터를 대표하는 최소의 프로토타입 집합을 선택하기 위해 집합 덮개 최적화를 이용한다. 제안하는 선택 방법은 클래스 별 프로토타입을 선택하는 그리디 알고리즘으로 설계되며, 대규모 훈련 데이터에 대한 병렬처리가 가능하다. 분류 예측은 최근접 이웃 규칙을 이용하며, 새로운 훈련 데이터는 프로토타입 집합이다. 실험에서 제안하는 방법은 기연구된 학습 방법에 비해 일반화 성능이 우수하다.

KCI등재

5병리 정보 시스템을 위한 이미지 외곽선 추출 기법 연구

저자 : Xie Xiao , 오상윤 ( Sangyoon Oh )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 5권 10호 발행 연도 : 2016 페이지 : pp. 489-496 (8 pages)

다운로드

(기관인증 필요)

초록보기

병리 정보시스템(Pathological Information System: PIS)은 매일 수천 장씩 생산되는 환자 병리 이미지를 관리하는데 활용되고 있으며, 이 이미지 정보들을 어떻게 효과적으로 처리할 것인지는 병리 정보 처리에 있어서 중요한 연구 과제 중 하나이다. 이미지의 외곽선을 추출하는 것은 병리 이미지 처리에 있어 가장 중요한 작업이지만 현재 사용되는 알고리즘은 정확도에 있어 많은 개선점을 가지므로, 본 논문에서는 이미지의 외곽선 검측에 있어서 기존의 Canny 알고리즘의 원리를 바탕으로 적응적 임계값 설정이 가능하며 눈금자를 임계값 설정의 기준으로 삼는방식을 제안하여 기존 외곽선 추출 방식보다 정확한 방식을 제안한다. 제안 방식은 기존 방식과의 비교실험을 통해 성능을 검증하였으며, 이 실험에서는 임의로 선정된 병리 이미지 군, 기존 방식으로는 식별이 제한되었던 병리 이미지 군 및 의도적으로 노이즈를 추가한 이미지 군을 대상으로 실험하였고, 실험 결과를 비교하여 제안하는 이미지 외곽선 식별 방식의 향상된 성능을 증명했다.

KCI등재

6개량 Douglas-Peucker 알고리즘 기반 고속 Shape Matching 알고리즘

저자 : 심명섭 ( Myoung-sup Sim ) , 곽주현 ( Ju-hyun Kwak ) , 이창훈 ( Chang-hoon Lee )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 5권 10호 발행 연도 : 2016 페이지 : pp. 497-502 (6 pages)

다운로드

(기관인증 필요)

초록보기

Shape Contexts Recognition(SCR)은 도형이나 사물 등의 모양을 인식하는 기술로 문자인식, 모션인식, 얼굴인식, 상황인식 등의 기반이 되는 기술이다. 하지만 일반적인 SCR은 Shape의 모든 contour에 대해 히스토그램을 만들고 Shape A, B 비교를 위해 추출된 contour를 1:1 개수대로 매핑함으로써 처리속도가 느리다는 단점이 있다. 따라서 본 논문에서는 Shape 모양에 따라 윤곽선을 찾고 개량 DP 알고리즘 및 해리스코너 검출기를 이용하여 contour를 최적화시킴으로써 간략하면서도 더 효과적인 알고리즘을 만들었다. 이렇게 개선된 방법을 사용함으로써 기존방법보다 처리 수행속도가 빨라짐을 확인하였다.

KCI등재

7다중 사용자를 위한 Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델

저자 : 이석균 ( Suk Kyoon Lee ) , 엄현민 ( Hyun Min Um ) , 권혁태 ( Hyuck Tae Kwon )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 5권 10호 발행 연도 : 2016 페이지 : pp. 503-510 (8 pages)

다운로드

(기관인증 필요)

초록보기

최근 제안된 FsGr 모델은 가속도 센서 기반의 제스처 인식을 위한 방법으로 DTW 알고리즘을 두 단계로 적용하여 인식률을 개선하였다. FsGr 모델에서는 유사제스처 집합 개념을 정의하는데 훈련과정에서 유사제스처 집합들을 생성한다. 제스처 인식의 1차 인식 시도에서 유사제스처 집합이 정의된 제스처로 판정되면, 이 유사제스처 집합의 제스처들에 대해 특징이 강조된 부분들을 추출해 DTW를 통한 2차 인식을 시도한다. 그러나 동일 제스처도 사용자의 신체 크기, 나이, 성별, 등의 신체적인 특징에 따라 매우 다른 특성을 보이고 있어 FsGr 모델을 다중 사용자 환경에 적용하기에는 한계가 있다. 본 논문에서는 이를 다중 사용자 환경으로 확장한 FsGrM 모델을 제안하고 이를 사용한 스마트TV의 채널 및 볼륨 제어 프로그램을 보인다.

1
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기