논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> 라이다 측정 거리 향상을 위한 통합 수신 시스템 개발(아날로그방식과 광자계수방식 신호 접합)

KCI등재

라이다 측정 거리 향상을 위한 통합 수신 시스템 개발(아날로그방식과 광자계수방식 신호 접합)

Development of Lidar detection system for improvement of measurement range (Combined photon counting detection and analog-to-digital signal)

신동호 ( Dong Ho Shin ) , 김영준 ( Young J. Kim ) , 신성균 ( Sung Kyun Shin ) , 노영민 ( Young Min Noh )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 30권2호
  • : 연속간행물
  • : 2014년 04월
  • : 251-258(8pages)
대한원격탐사학회지

DOI


목차

1. 서 론
2. 연구방법
3. 결 과
4. 결 론
사 사
References

키워드 보기


초록 보기

본 연구는 에어로졸의 광학적 특성 분석을 위한 라이다 시스템의 정확성 향상을 위해 새롭게 개발한 신호 수신 시스템을 설명하고자 한다. 광주과학기술원의 라이다에 아날로그 방식과 광자계수 방식을 통합한 시스템을 활용하여 에어로졸 후방산란 신호를 동시에 관측 가능한 수신단을 개발하였다. 관측된 두 신호 결합을 위해 접합 알고리즘을 고안하였고, 신호 결합에 앞서 광자계수 방식 신호의 Pile up효과를 보정하기 위해 부동시간(Dead time)을 계산하여 보정하였다. 관측 신호 분석을 통해 아날로그 방식 신호, 광자계수 방식 신호, 접합신호 그리고 부동시간 보정에 따른 차이점을 설명하고, 최종적으로 에어로졸 후방산란계수를 산출하여 상호 비교 및 정확성 향상을 확인하였다.
We upgraded to utilize a novel method for combining the analog to digital converter and photon-counting measurements for backscatter photon signal of lidar. We have and improve the standard combining method for determination of those conversion factors between analog to digital converter data and photon-counting data measurement which is conducted dead time correction. The combining method and dead time correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.

UCI(KEPA)

I410-ECN-0102-2015-400-000461617

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1891


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권6호(2022년 12월) 수록논문
최근 권호 논문
| | | |

KCI등재

1핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지

저자 : 송아람 ( Ahram Song ) , 이창희 ( Changhui Lee ) , 이진민 ( Jinmin Lee ) , 한유경 ( Youkyung Han )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 991-1005 (15 pages)

다운로드

(기관인증 필요)

초록보기

위성 영상은 핵 활동 탐지와 검증을 위한 효율적인 보조자료로 핵시설과 같이 접근이 어렵고 정보가 제한된 지역에 매우 유용하다. 특히 장비의 이동 또는 시설물의 변화와 같이 핵실험을 준비하는 과정은 시계열 분석을 통해 충분히 식별 가능하다. 본 연구에서는 핵 활동과 관련된 주요 객체의 변화를 탐지하기 위하여, 다시기 영상의 의미론적 분할 결과의 차이를 이용하였다. AIHub에서 제공하는 KOMPSAT 3/3A 영상으로 구성된 객체 판독 데이터셋에서 건물, 도로, 소형 객체의 정보를 추출하여 학습하였으며, U-Net, PSPNet, Attention U-Net에 대하여 주요 파라미터를 변경하며 대상 객체 추출에 적합한 의미론적 분할 모델을 분석하였다. 의미론적 분할 결과의 차영상으로 생성된 결과에 객체 정보를 포함하여 최종 변화 탐지를 수행하였으며, 제안 기법을 임의의 변화를 포함한 시뮬레이션 영상에 적용한 결과, 변화 객체를 효과적으로 추출할 수 있었다. 본 연구에서 제시된 변화 탐지 기법을 적용하기 위해서는, 의미론적 분할의 정확도가 우선적으로 확보되어야 하는 제약이 있으나, 추후 실험 대상 지역에 대한 학습데이터셋이 증가할 수록 적용 가능한 분석 범위가 증가할 것으로 기대된다.


Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

KCI등재

2훈련자료 내 재배지역의 비율에 따른 딥러닝 모델의 성능 평가

저자 : 성선경 ( Seonkyeong Seong ) , 최재완 ( Jaewan Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1007-1014 (8 pages)

다운로드

(기관인증 필요)

초록보기

차세대중형위성(Compact Advanced Satellite 500, CAS500)은 식생, 산림, 농업 등의 분야를 포함한 다양한 목적을 위하여 사용될 수 있으며, 다양한 영역에 대한 빠른 위성영상의 취득이 가능할 것으로 기대되고 있다. 차세대중형위성을 통하여 취득된 위성영상을 농업분야에서 활용하기 위해서는 위성영상 기반 작물재배지역추출 기법에 대한 개발이 필요하다. 특히, 최근 들어 딥러닝 분야에 대한 연구가 활발해짐에 따라서, 작물재배지역 추출을 위한 딥러닝 모델의 개발 및 훈련자료 생성에 관한 연구가 필요한 실정이다. 본 연구에서는 PlanetScope 위성영상과 팜맵을 이용하여 합천군 지역의 양파 및 마늘 재배지역을 분류하고자 하였다. 특히, 효과적인 모델의 학습을 위하여 작물재배지역의 비율에 따른 모델 성능을 분석하고자 하였다. 실험에 사용한 딥러닝 모델은 Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet)을 작물재배지역 분류의 목적에 맞도록 재구성하여 활용하였다. 실험결과, 훈련자료 내 작물재배지역의 비율이 딥러닝 모델의 성능에 영향을 미치는 것을 확인하였다.


Compact Advanced Satellite 500 (CAS500) can be used for various purposes, including vegetation, forestry, and agriculture fields. It is expected that it will be possible to acquire satellite images of various areas quickly. In order to use satellite images acquired through CAS500 in the agricultural field, it is necessary to develop a satellite image-based extraction technique for crop-cultivated areas. In particular, as research in the field of deep learning has become active in recent years, research on developing a deep learning model for extracting crop cultivation areas and generating training data is necessary. This manuscript classified the onion and garlic cultivation areas in Hapcheon-gun using PlanetScope satellite images and farm maps. In particular, for effective model learning, the model performance was analyzed according to the proportion of crop-cultivated areas. For the deep learning model used in the experiment, Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet) was reconstructed to fit the purpose of crop cultivation area classification and utilized. As a result of the experiment, the ratio of crop cultivation areas in the training data affected the performance of the deep learning model.

KCI등재

3화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법

저자 : 김재인 ( Jae-in Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1015-1023 (9 pages)

다운로드

(기관인증 필요)

초록보기

착륙선의 진입-하강-착륙 과정에는 많은 환경적 및 기술적 어려움이 수반된다. 이러한 문제들을 해결하기 위한 방안으로, 최근 착륙선에는 지형상대항법 기술이 필수적으로 고려되고 있다. 지형상대항법은 하강하는 착륙선에서 수집되는 Inertial Measurement Unit (IMU) 데이터 및 영상 데이터를 기 구축된 참조 데이터와 비교하여 착륙선의 위치 및 자세를 추정하는 기술이다. 본 논문에서는 화성에서 활용할 지형상대항법 기술을 개발하기 위해 그 핵심 기술 요소로서 하강 데이터셋 생성 및 랜드마크 추출 방법을 제시한다. 제안방법은 화성착륙 시뮬레이션 궤적정보를 이용하여 하강하는 착륙선의 IMU 데이터를 생성하며, 이에 맞추어 고해상도 정사영상지도 및 수치표고모델로부터 ray tracing 기법을 통해 하강영상을 생성한다. 랜드마크 추출은 텍스쳐 정보가 부족한 화성 표면의 특성을 고려하여 영역 기반 추출 방식으로 이루어지며, 정합 정확도와 속도 향상을 위해 탐색영역 축소가 수행된다. 하강영상 생성 방법의 성능분석 결과는 제안방법으로 촬영 기하학적 조건을 만족시키는 영상 생성이 가능함을 보여주었으며, 랜드마크 추출 방법의 성능분석 결과는 제안방법을 통해 수 미터 수준의 위치 추정 정확도를 담보하면서 동시에 특징점 기반 방식만큼의 처리속도 확보가 가능함을 보여주었다.


The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

KCI등재

4무인항공기 영상을 위한 영상 매칭 기반 생성포인트 클라우드의 후처리 방안 연구

저자 : 이수암 ( Sooahm Rhee ) , 김한결 ( Han-gyeol Kim ) , 김태정 ( Taejung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1025-1034 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 건물의 포인트 클라우드를 추출할 때 발생하는 홀 영역의 보간을 통한 후처리 방안을 제안한다. 스테레오 영상 데이터에서 영상 매칭을 수행할 경우 차폐 및 건물 벽면 등의 영향으로 홀이 발생한다. 이런 영역은 추후 포인트 클라우드를 기반으로 하는 부가 산출물의 생성에 장애 요인이 될 수 있으므로, 이에 대한 효과적인 처리 기법의 적용이 필요하다. 먼저 영상 매칭을 적용하여 생성된 시차맵을 기반으로 초기 포인트 클라우드를 추출한다. 포인트 클라우드를 격자화 시키면 차폐영역 및 건물 벽면의 영향으로 발생하는 홀 영역을 확인할 수 있다. 홀 영역에 삼각망을 생성하고 삼각망 내부 값을 영역의 최소값으로 처리하는 과정을 반복하는 것으로 건물 주변의 지표면과 건물 간에 어색함 없는 보간의 수행이 가능하다. 격자화 된 데이터에서 보간 된 영역에 해당하는 위치정보를 포인트로 추가하여 새로운 포인트 클라우드를 생성한다. 보간과정 중 불필요한 점의 추가를 최소화하기 위해 초기 포인트 클라우드 영역에서 벗어나는 영역으로 보간 된 데이터는 처리하지 않았으며, 보간 된 포인트 클라우드에 적용되는 RGB 밝기값은 매칭에 사용된 스테레오 영상 중 촬영중심과 해당 픽셀이 가장 근접한 영상으로 설정하여 처리하였다. 실험 결과 제안 기법을 통해 대상영역의 포인트 클라우드 생성 후 발생하는 음영 영역이 효과적으로 처리되는 것을 확인할 수 있었다.


In this paper, we propose a post-processing method through interpolation of hole regions that occur when extracting point clouds. When image matching is performed on stereo image data, holes occur due to occlusion and building façade area. This area may become an obstacle to the creation of additional products based on the point cloud in the future, so an effective processing technique is required. First, an initial point cloud is extracted based on the disparity map generated by applying stereo image matching. We transform the point cloud into a grid. Then a hole area is extracted due to occlusion and building façade area. By repeating the process of creating Triangulated Irregular Network (TIN) triangle in the hall area and processing the inner value of the triangle as the minimum height value of the area, it is possible to perform interpolation without awkwardness between the building and the ground surface around the building. A new point cloud is created by adding the location information corresponding to the interpolated area from the grid data as a point. To minimize the addition of unnecessary points during the interpolation process, the interpolated data to an area outside the initial point cloud area was not processed. The RGB brightness value applied to the interpolated point cloud was processed by setting the image with the closest pixel distance to the shooting center among the stereo images used for matching. It was confirmed that the shielded area generated after generating the point cloud of the target area was effectively processed through the proposed technique.

KCI등재

5MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구

저자 : 김예슬 ( Yeseul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1035-1046 (12 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 토지 피복 분류를 위한 다중 해상도 자료 융합의 적용성을 평가하였다. 여기서 다중 해상도 자료 융합 모델로는 spatial time-series geostatistical deconvolution/fusion model (STGDFM)을 적용하였다. 연구 지역은 미국 Iowa 주의 일부 농경 지역으로 선정하였으며, 대상 지역의 규모를 고려해 다중 해상도 자료 융합의 입력 자료로 Moderate Resolution Imaging Spectroradiometer (MODIS) 및 Landsat 영상을 사용하였다. 이를 바탕으로 STGDFM 적용해 Landsat 영상이 결측된 시기에서 가상의 Landsat 영상을 생성하였다. 그리고 획득한 Landsat 영상과 함께 STGDFM의 융합 결과를 입력 자료로 사용해 토지 피복 분류를 수행하였다. 특히 다중 해상도 자료 융합의 적용성 평가를 위해 획득한 Landsat 영상만을 이용한 분류 결과와 Landsat 영상 및 융합 결과를 모두 이용한 분류 결과를 비교 평가하였다. 그 결과, Landsat 영상만을 이용한 분류 결과에서는 대상 지역의 주요 토지 피복인 옥수수와 콩 재배지에서 혼재 양상이 두드러지게 나타났다. 또한 건초 및 곡물 지역과 초지 지역 등 식생 피복 간의 혼재 양상도 큰 것으로 나타났다. 반면 Landsat 영상 및 융합 결과를 이용한 분류 결과에서는 옥수수와 콩 재배지의 혼재 양상과 식생 피복 간의 혼재 양상이 크게 완화되었다. 이러한 영향으로 Landsat 영상 및 융합 결과를 이용한 분류 결과에서 분류 정확도가 약 20%p 향상되었다. 이는 STGDFM을 통해 MODIS 영상이 갖는 시계열 분광 정보를 융합 결과에 반영하면서 Landsat 영상의 결측을 보완할 수 있었고, 이러한 시계열 분광 정보가 분류 과정에 결합되면서 오분류를 크게 줄일 수 있었던 것으로 판단된다. 본 연구 결과를 통해 토지 피복 분류에 다중 해상도 자료 융합이 효과적으로 적용될 수 있음을 확인하였다.


This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

KCI등재

6Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가

저자 : 지준화 ( Junhwa Chi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1047-1056 (10 pages)

다운로드

(기관인증 필요)

초록보기

지구 온난화의 중요한 지시자인 북극의 바다 얼음인 해빙은 기후 시스템, 선박의 항로 안내, 어업 활동 등에서의 중요성으로 인해 다양한 학문 분야에서 관심을 받고 있다. 최근 자동화와 효율적인 미래 예측에 대한 요구가 커지면서 인공지능을 이용한 새로운 해빙 예측 모델들이 전통적인 수치 및 통계 예측 모델을 대체하기 위해 개발되고 있다. 본 연구에서는 북극 해빙의 전역적, 지역적 특징을 학습할 수 있는 two-stream convolutional long- and short-term memory (TS-ConvLSTM) 인공지능 모델의 북극 해빙 면적이 최저를 보이는 9월에 대해 2001년부터 2021년까지 장기적인 성능 검증을 통해 향후 운용 가능한 시스템으로써의 가능성을 살펴보고자 한다. 장기 자료를 통한 검증 결과 TS-ConvLSTM 모델이 훈련자료의 양이 증가하면서 향상된 예측 성능을 보여주고 있지만, 최근 지구 온난화로 인한 단년생 해빙의 감소로 인해 해빙 농도 5-50% 구간에서는 예측력이 저하되고 있음을 보여주었다. 반면 TS-ConvLSTM에 의해 예측된 해빙 면적과 달리 Sea Ice Prediction Network에 제출된 Sea Ice Outlook (SIO)들의 해빙 면적 중간값의 경우 훈련자료가 늘어나더라도 눈에 띄는 향상을 보이지 않았다. 본 연구를 통해 TS-ConvLSTM 모델의 향후 북극 해빙 예측 시스템의 운용 가능 잠재성을 확인하였으나, 향후 연구에서는 예측이 어려운 자연 환경에서 더욱 안정성 있는 예측 시스템 개발을 위해 더 많은 시공간 변화 패턴을 학습할 수 있는 방안을 고려해야 할 것이다.


Sea ice, frozen sea water, in the Artic is a primary indicator of global warming. Due to its importance to the climate system, shipping-route navigation, and fisheries, Arctic sea ice prediction has gained increased attention in various disciplines. Recent advances in artificial intelligence (AI), motivated by a desire to develop more autonomous and efficient future predictions, have led to the development of new sea ice prediction models as alternatives to conventional numerical and statistical prediction models. This study aims to evaluate the performance of the two-stream convolutional longand short-term memory (TS-ConvLSTM) AI model, which is designed for learning both global and local characteristics of the Arctic sea ice changes, for the minimum September Arctic sea ice from 2001 to 2021, and to show the possibility for an operational prediction system. Although the TSConvLSTM model generally increased the prediction performance as training data increased, predictability for the marginal ice zone, 5-50% concentration, showed a negative trend due to increasing first-year sea ice and warming. Additionally, a comparison of sea ice extent predicted by the TS-ConvLSTM with the median Sea Ice Outlooks (SIOs) submitted to the Sea Ice Prediction Network has been carried out. Unlike the TS-ConvLSTM, the median SIOs did not show notable improvements as time passed (i.e., the amount of training data increased). Although the TSConvLSTM model has shown the potential for the operational sea ice prediction system, learning more spatio-temporal patterns in the difficult-to-predict natural environment for the robust prediction system should be considered in future work.

KCI등재

7가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구

저자 : 이유진 ( Yoo Jin Lee ) , 이수암 ( Sooahm Rhee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1057-1068 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 논문은 모바일 기반의 실시간 영상 측위 기술 개발을 목표로 사용자가 촬영한 사진과 가상의 텍스쳐 영상 간의 매칭 가능성 확인 연구로 특징점 기반의 매칭 알고리즘의 조합 성능을 비교했다. 특징점 기반의 매칭 알고리즘은 특징점(feature)을 추출하는 과정과 추출된 특징점을 설명하는 서술자(descriptor)를 계산하는 과정, 최종적으로 서로 다른 영상에서 추출된 서술자를 매칭하고, 잘못 매칭된 특징점을 제거하는 과정으로 이루어진다. 이때 매칭 알고리즘 조합을 위해, 특징점을 추출하는 과정과 서술자를 계산하는 과정을 각각 같거나 다르게 조합하여 매칭 성능을 비교하였다. 가상 실내 텍스쳐 영상을 위해 V-World 3D 데스크탑을 활용하였다. 현재 V-World 3D 데스크톱에서는 수직 · 수평적 돌출부 및 함몰부와 같은 디테일이 보강되었다. 또한, 실제 영상 텍스쳐가 입혀진 레벨로 구축되어 있어, 이를 활용하여 가상 실내 텍스쳐 데이터를 기준영상으로 구성하고, 동일한 위치에서 직접 촬영하여 실험 데이터셋을 구성하였다. 데이터셋 구축 후, 매칭 알고리즘들로 매칭 성공률과 처리 시간을 측정하였고, 이를 바탕으로 매칭 성능 향상을 위해 매칭 알고리즘 조합을 결정하였다. 본 연구에서는 매칭 기법마다 가진 특장점을 기반으로 매칭 알고리즘을 조합하여 구축한 데이터셋에 적용해 적용가능성을 확인하였고, 추가적으로 회전요소가 고려되었을 때의 성능 비교도 함께 수행하였다. 연구 결과, Scale Invariant Feature Transform (SIFT)의 feature와 descriptor 조합이 가장 매칭 성공률이 좋았지만 처리 소요 시간이 가장 큰 것을 확인할 수 있었고, Features from Accelerated Segment Test (FAST)의 feature와 Oriented FAST and Rotated BRIEF (ORB)의 descriptor 조합의 경우, SIFT-SIFT 조합과 유사한 매칭 성공률을 가지면서 처리 소요시간도 우수하였다. 나아가, FAST-ORB의 경우, 10°의 회전이 데이터셋에 적용되었을 때에도 매칭 성능이 우세함을 확인하였다. 따라서 종합적으로 가상 텍스쳐 영상과 실영상간 매칭을 위해서 FAST-ORB 조합의 매칭 알고리즘이 적합한 것을 확인할 수 있었다.


This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

KCI등재

8정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구

저자 : 신대근 ( Daegeun Shin ) , 김소명 ( Somyoung Kim ) , 박주선 ( Juseon Bak ) , 백강현 ( Kanghyun Baek ) , 홍성재 ( Sungjae Hong ) , 김재환 ( Jaehwan Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1069-1080 (12 pages)

다운로드

(기관인증 필요)

초록보기

대류권 오존은 전 세계적으로 인간과 생태계에 막대한 피해를 입히는 오염 물질이다. 국지적인 오존 문제는 발생 지역에서 바람에 의해 풍하 측으로 이동함에 따라 지역적, 전 지구적 문제가 되고 있다. 보다 효율적인 오존 모니터링을 위해서 연속적인 일중 관측이 가능한 정지궤도 위성을 이용하려는 시도가 있어왔다. 이 연구에서는 정지궤도 위성에서 관측될 대류권 오존의 연속적인 관측을 이용하여 대류권 오존 이동벡터(Tropospheric Ozone Movement Vector, TOMV) 산출을 세계 최초로 시도했다. 현재 정지궤도 위성을 이용한 대류권오존 산출물이 존재하지 않기 때문에 대기화학모델인 GEOS-Chem에서 산출된 대류권 오존 자료를 이용하였다. 산출된 오존의 이동 속도는 화학모델에 비해 높은 값이 나왔지만 오염의 이동의 방향은 매우 높은 일치성을 보여주었다. 제시된 알고리즘을 이용하면 오존의 유입 플럭스를 오존의 움직이는 속도와 방향을 이용하여 산출할 수도 있다. 이와 같은 결과는 오염물질의 이동분석에 널리 사용되는 역방향 궤적 방법의 대안으로써 오염물질의 모니터링과 예보에 보다 유용하게 사용될 수 있다. 이와 반대로 오존분포의 경계선이 불분명하면 TOMV 산출에 오차를 발생시킬 수 있기 때문에 이동에 대한 잘못된 정보를 줄 수 있는 것이 이 방법의 한계이다. 그럼에도 불구하고 TOMV 방법은 앞으로 활동하게 될 정지궤도 위성을 이용한 오염 모니터링과 예보에 진일보한 방향을 제시해줄 수 있을 것이다.


The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

KCI등재

9GACOS 모델 대기 위상 지연 보정을 활용한 SBAS-InSAR 기술 기반 울산광역시 지반 침하 탐지

저자 : 수레시크리쉬난 ( Suresh Krishnan Palanisamy Vadivel ) , 김덕진 ( Duk-jin Kim ) , 이정훈 ( Jung-hoon Lee ) , 송주영 ( Juyoung Song ) , 김준우 ( Junwoo Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1081-1089 (9 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 시계열 Small Baseline Subset (SBAS)-InSAR 기법을 이용하여 울산시의 지반 침하를 조사하였으며, 79개의 Sentinel-1 SAR 영상과 385개의 간섭도 영상(interferogram)을 사용하여 2015년 5월부터 2021년 12월 울산광역시의 지상 변위(surface displacement)를 추정하였다. 지반 침하율은 북구와 남구 삼산동 2지역에서 연 3.44 cm, 1.68 cm로 계측되었다. 또한 Generic Atmospheric Correction Online Service (GACOS)로 생성한 Zenith Total Delay (ZTD) 지도를 활용하여 unwrapping된 간섭도 위상에서 대기 지연(tropospheric delay)의 영향을 제거할 수 있는 가능성을 평가하였으며, GACOS ZTD 보정 전후의 SBAS-InSAR 지상 변위 측정의 차이가 연 1 mm미만임을 발견하였다.


This study aims to investigate and monitor the ground subsidence in Ulsan city, South Korea using time-series Small Baseline Subset (SBAS)-InSAR analysis. We used 79 Sentinel-1 SAR scenes and 385 interferograms to estimate the ground displacements at Ulsan city from May 2015 and December 2021. Two subsiding regions Buk-gu and Nam-gu Samsan-dong were found with the subsidence rate of 3.44 cm/year and 1.68 cm/year. In addition, we evaluated the possibility of removing the effect of atmospheric (tropospheric delay) phase in unwrapped phase using the Zenith Total Delay (ZTD) maps from Generic Atmospheric Correction Online Service (GACOS). We found that the difference between the SBAS-InSAR ground displacements before and after GACOS ZTD correction is less than 1 mm/year in this study.

KCI등재

10개선된 DeepResUNet과 컨볼루션 블록 어텐션 모듈의 결합을 이용한 의미론적 건물 분할

저자 : 예철수 ( Chul-soo Ye ) , 안영만 ( Young-man Ahn ) , 백태웅 ( Tae-woong Baek ) , 김경태 ( Kyung-tae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1091-1100 (10 pages)

다운로드

(기관인증 필요)

초록보기

딥러닝 기술의 진보와 함께 다양한 국내외 고해상도 원격탐사 영상의 활용이 가능함에 따라 딥러닝 기술과 원격탐사 빅데이터를 활용하여 도심 지역 건물 검출과 변화탐지에 활용하고자 하는 관심이 크게 증가하고 있다. 본 논문에서는 고해상도 원격탐사 영상의 의미론적 건물 분할을 위해서 건물 분할에 우수한 성능을 보이는DeepResUNet 모델을 기본 구조로 하고 잔차 학습 단위를 개선하고 Convolutional Block Attention Module(CBAM)을 결합한 새로운 건물 분할 모델인 CBAM-DRUNet을 제안한다. 제안한 건물 분할 모델은 WHU 데이터셋과 INRIA 데이터셋을 이용한 성능 평가에서 UNet을 비롯하여 ResUNet, DeepResUNet 대비 F1 score, 정확도, 재현율 측면에서 모두 우수한 성능을 보였다.


As deep learning technology advances and various high-resolution remote sensing images are available, interest in using deep learning technology and remote sensing big data to detect buildings and change in urban areas is increasing significantly. In this paper, for semantic building segmentation of high-resolution remote sensing images, we propose a new building segmentation model, Convolutional Block Attention Module (CBAM)-DRUNet that uses the DeepResUNet model, which has excellent performance in building segmentation, as the basic structure, improves the residual learning unit and combines a CBAM with the basic structure. In the performance evaluation using WHU dataset and INRIA dataset, the proposed building segmentation model showed excellent performance in terms of F1 score, accuracy and recall compared to ResUNet and DeepResUNet including UNet.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1C-밴드 다중시기 SAR 위성 영상을 이용한 녹산국가산업단지 일대의 지반침하 관측

저자 : 이창욱 ( Chang Wook Lee ) , 조민지 ( Min Ji Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 161-172 (12 pages)

다운로드

(기관인증 필요)

초록보기

녹산국가산업단지가 설립된 부산 낙동강 하류는 국내에서 연약지반이 가장 깊이 분포하고 있는 지역 중에 하나이다. 연약지반의 깊이가 깊은 해안 매립지의 경우, 장기간에 걸쳐 상당히 큰 잔류침하가 발생하게 된다. 본 연구는 RADARSAT-1과 Envisat의 다중시기 SAR 영상을 이용한 차분간섭기법과 SBAS 시계열 기법을 통해, 녹산산업국가단지에서 2002년 9월부터 2007년 4월 동안에 발생된 지반침하를 관측하였다. 그 결과 연구지역의 동쪽 중앙, 서쪽 중앙, 서쪽, 해안가와 닿아있는 남단에서 최대 10 cm/yr, 평균 6 cm/yr의 속도로 지반침하가 발생되고 있음을 확인하였다. 또한 RADARSAT-1 SAR 영상을 이용한 평균지표변위도는 2001년부터 2002년까지 침하계로 관측된 현장관측자료와 비교·분석되었다. 시간에 따른 지표변위 양상이 거의 선형에 가깝게 나타나므로, 연구지역의 지반침하가 안정권에 접어들 때까지 지속적인 모니터링이 필요할 것으로 사료된다

KCI등재

2화성쇄설류 분출 지역의 감시를 위한 광학영상과 화성쇄설류 범람 예측 모델링 분석

저자 : 이창욱 ( Chang Wook Lee ) , 이사로 ( Sa Ro Lee ) , 조민지 ( Min Ji Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 173-183 (11 pages)

다운로드

(기관인증 필요)

초록보기

화산활동으로 인한 피해를 현장관측을 통해 조사할 경우, 비용과 인력, 안전 등의 문제로 인한 어려움이 많다. 인공위성 영상을 활용한 원격탐사는 이와 같은 문제를 극복하기에 매우 유용한 도구 중에 하나이다. 본 연구에서는 2009년 4월 17일과 2012년 7월 30일에 획득된 Landsat 7 ETM+ 위성 영상을 이용하여 인도네시아 수마트라 섬에 위치한 시나붕 화산의 2010년 화산활동을 관측하였다. 피복분류를 통해 2010년 분화 전·후의 화성쇄설류 범람 지역을 추출한 결과, 2010년 분화로 인해 화성쇄설류 범람 지역의 면적이 약 3배나 증가한 것을 확인하였다. 화성쇄설류 범람 지역 예측 모델링으로 얻어진 결과는 Landsat 영상에서 추출된 화성쇄설류 범람 지역과 비교되었다. 그 결과, 화성쇄설류 범람 지역 예측 모델링은 범람의 거리(길이)는 92%로 정확하게 계산되었지만 화산의 경사가 급격한 지역에서는 범람의 폭이 다소 부정확하게 계산되어 17%의 정확도를 나타내었다

KCI등재

3미분을 이용한 단일채널 SAR SLC 영상 내 지상 이동물체의 탐지방법

저자 : 원중선 ( Joong Sun Won )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 185-205 (21 pages)

다운로드

(기관인증 필요)

초록보기

SAR를 이용한 지상이동물체탐지(GMTI)는 SAR의 주요 활용 기술 중 하나이다. 최근 위성 탑재 SAR 시스템의 해상도가 높아지면서 지상이동목표물 탐지의 유용성은 더욱 강조되고 있다. 현재까지 다양한 지상이동물체탐지 기법이 개발되었으나 대부분은 다중채널 SAR 시스템을 이용하는 기술에 집중되었다. 그러나, 아직도 단일채널 SAR 영상으로부터 지상 이동물체를 탐지하는 것은 매우 어려운 문제로 남아 있는 반면 다중채널 위성 탑재 SAR 시스템은 아직은 그 활용이 현실적으로 매우 제한적인 상황이다. 일단 지상의 목표물이 탐지되고 이동속도가 3 m/s(약 10.8 km/h) 이상인 경우 그 목표물의 이동속도는 단일채널 SAR 자료라도 오차범위 약 5%의 정밀도로 복원 가능하다. 따라서 단일채널 SAR 자료로부터 지상의 이동물체 자체를 탐지하는 것이 핵심이며, 이 논문에서는 SAR Single-Look Complex(SLC) 영상자료에 미분을 적용하여 쉽고 빠르게 탐지하는 방법을 제시한다. 이 논문에서는 SAR SLC 자료의 미분 값은 도플러 중심주파수를 나타냄을 유도하고, 따라서 미분 값은 지상이동물체 탐지에 매우 효과적임을 설명하고자 한다. 이 논문에서 제시하는 미분 방법의 결과와 정밀한 속도복원 방법의 상관계수 R2 는 0.62로 나타났으며, 이는 이동물체를 탐지하는 데는 충분함을 지시한다. 이 방법은 매우 단순한 미분으로 도플러 중심주파수 분석에 근거하고 있으나 최종 자료처리에 앞서 도플러 경사도를 제거해야 하며, 적용결과의 효율성과 신뢰도는 이 도플러 경사도 제거 과정에 크게 좌우된다. 지상에 모서리 산란체를 탑재하고 이동속도를 조절한 실험용 차량과 이를 관측한 TerraSAR-X SLC 자료를 이용하여 검증을 실시하였다. 검증결과 지상 이동물체를 매우 쉽게 탐지하면서도 정지된 상태의 강한 산란체는 약 18.5 dB의 신호파워를 줄여 효과적으로 제거 하는 것으로 나타났다. 현재 이 방법은 지상의 이동속도 8.8 km/h 이상인 경우 매우 효과적이며, 아리랑-5호를 비롯한 모든 단일채널 SAR 시스템에 적용 가능하다.

KCI등재

4고해상도 수치항공정사영상기반 하천토지피복지도 제작을 위한 분류기법 연구

저자 : 김영진 ( Young Jin Kim ) , 차수영 ( Su Young Cha ) , 조용현 ( Young Hyeon Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 207-218 (12 pages)

다운로드

(기관인증 필요)

초록보기

하천을 복원하거나 정비하는데 있어서 중요한 하천의 실태를 파악하는데, 하천 피복상태 정보는 매우 중요하다. 본 연구의 목적은 하천의 피복상태 정보를 효율적이고 경제적으로 획득하기 위해 고해상도 항공정사영상의 효과적인 분류를 위한 감독분류 방법을 시험하고 하천토지피복지도 작성을 위한 최적 분류 방법을 검증하였다. 항공 정사영상의 CIR 영상과 RGB 영상을 이용한 하천토지피복 분석과정은 하천토지피복분류 항목 선정, 감독분류, 정확도 평가 및 분류지도 작성의 순서로 수행하였다. 분류 항목은 수역, 도로, 건물, 초지, 산림, 나지, 밭의 7가지 항목을 선정하였다. 감독 분류 알고리즘으로는 최대우도분류, 최소거리분류, 평행육면체분류, 마하라노비스거리분류 기법을 적용하였다. 감독분류의 분류정확도를 개선하기 위해 필터링과 훈련지역의 왜도 검증을 수행한 결과 CIR 영상을 이용한 최대우도분류 기법이 가장 높은 정확도를 보였다.

KCI등재

5수정된 IEA 기반의 분광혼합분석 기법을 이용한 임상분류

저자 : 한유경 ( You Kyung Han ) , 김용일 ( Yong Il Kim ) , 김용현 ( Young Hyun Kim ) , 송아람 ( Ah Ram Song )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 219-226 (8 pages)

다운로드

(기관인증 필요)

초록보기

분광혼합분석 결과로 얻어지는 각 물체의 점유비율을 활용하면 보다 세밀한 분류가 가능하다. 이는 복잡한 도심지역의 피복분류 뿐만 아니라 혼효림이 많은 한반도 임상분류에 적합한 분류기법이 될 수 있다. 효과적인 임상분류를 위해서는 무엇보다 적절한 endmember의 추출이 선행되어야 하는데, 기존에 주로 사용되었던 기하학적 방법(geometric endmember selection)은 분광특성이 유사한 산림지역에 적합하지 않다. 본 연구에서는 영상에서 직접 순수한 화소를 추출하는 기법 중의 하나인 IEA(Iterative Error Analysis)와 침엽수와 활엽수의 분광특성을 이용하여 실험지역을 대표할 수 있는 각각의 endmember를 자동으로 추출하였다. CASI(Compact Airborne Spectrographic Imager) 영상의 두 지역에 대하여 분광혼합분석을 이용한 분류를 수행한 결과, 분류 정확도는 각각 86%와 90%로, 제안한 기법이 실험대상지역을 대표하는 침엽수와 활엽수의 endmember를 적절하게 추출한 것으로 나타났다. 분광혼합분석 기법을 이용한 보다 효과적인 분류를 위해서 분류항목 외 기타물질을 endmember로 고려하는 연구가 필요할 것으로 보인다.

KCI등재

6고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석

저자 : 이하성 ( Ha Seong Lee ) , 오관영 ( Kwan Young Oh ) , 정형섭 ( Hyung Sup Jung )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 227-239 (13 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

본 연구는 서로 다른 센서 특성을 지닌 KOMPSAT-2, QuickBird 및 WorldView-2 고해상도 위성영상에 영상융합기법을 적용하여 그 결과를 비교평가 하는 것이다. 사용된 기법은 대표적인 CS 기반 융합기법인 GIHS, GIHSA, GS1 및 Adaptive IHS를 사용하였다. 영상융합 기법의 품질평가는 시각적 분석과 정량적 분석을 수행하였으며, 정량적 분석에는 SAM, Spectral ERGAS 및 Q4을 사용하였다. KOMPSAT-2 영상은 GHISA 기법의 경우 상대적으로 우수한 성능을 나타내는 반면, QuickBird와 WorldView-2영상은 GS1기법의 경우에 우수한 성능을 나타낸다.

KCI등재

7다파장 라만 라이다 시스템을 이용한발원지 및 이동 경로에 따른 황사의 광학적 특성 변화 연구

저자 : 신동호 ( Dong Ho Shin ) , 이권호 ( Kwon Ho Lee ) , 김영준 ( Young J. Kim ) , 신성균 ( Sung Kyun Shin ) , 노영민 ( Young Min Noh ) , 김관철 ( Kwan Chul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 241-249 (9 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 광주과학기술원의 다파장 라만 라이다 시스템을 이용하여 2009년부터 2011년, 3년동안 광주에서 대기 에어로졸의 관측을 실시하였다. 관측된 라이다 신호의 분석으로부터 산출된 편광소멸도를 이용하여 황사의 층을 구분해 내었다. 구분 된 황사의 층의 고도에 따른 정보들은 Hybrid Single Particle Lagrangian Integrated Trajectory(HYSPLIT) 모델을 이용한 황사 층의 역궤적 분석에 이용되었고, 그 정보들을 통하여, 황사 층의 발원지 및 유입경로를 규명할 수 있었다. 한반도로 유입되는 황사는 고비사막을 기원으로 하는 경우가 가장 많은 것으로 나타났으며, 또한, 황사의 이동경로에 따른 광학적 특성 변화를 규명하기 위해, 중국 공업지역을 통과하여 유입된 황사 층과 발원지로부터 한반도로 직접적으로 유입된 황사의 구분하여 경로에 따른 입자 편광소멸도의 통계 분석을 실시하였다. 중국 공업지역을 통과하여 한반도로 유입된 황사의 편광소멸도는 0.07-0.1의 값을 보인 반면, 발원지로부터 공업지역을 경유하지 않고 직접 유입된 황사의 편광소멸도는 0.11-0.15로 상대적으로 높은 값을 보였다. 이는 발원지에서 발생한 순수 황사 입자가 이동 중에 공업지역에서 발생한 오염입자와 혼합하여 황사층의 편광소멸도를 감소시킨 것으로 사료된다.

KCI등재

8라이다 측정 거리 향상을 위한 통합 수신 시스템 개발(아날로그방식과 광자계수방식 신호 접합)

저자 : 신동호 ( Dong Ho Shin ) , 김영준 ( Young J. Kim ) , 신성균 ( Sung Kyun Shin ) , 노영민 ( Young Min Noh )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 251-258 (8 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 에어로졸의 광학적 특성 분석을 위한 라이다 시스템의 정확성 향상을 위해 새롭게 개발한 신호 수신 시스템을 설명하고자 한다. 광주과학기술원의 라이다에 아날로그 방식과 광자계수 방식을 통합한 시스템을 활용하여 에어로졸 후방산란 신호를 동시에 관측 가능한 수신단을 개발하였다. 관측된 두 신호 결합을 위해 접합 알고리즘을 고안하였고, 신호 결합에 앞서 광자계수 방식 신호의 Pile up효과를 보정하기 위해 부동시간(Dead time)을 계산하여 보정하였다. 관측 신호 분석을 통해 아날로그 방식 신호, 광자계수 방식 신호, 접합신호 그리고 부동시간 보정에 따른 차이점을 설명하고, 최종적으로 에어로졸 후방산란계수를 산출하여 상호 비교 및 정확성 향상을 확인하였다.

KCI등재

9천리안 위성영상에 감지된 사쿠라지마 화산분화와 지자기 변동 분석 연구 -2013년 8월 18일 분화를 중심으로-

저자 : 이윤경 ( Yoon Kyung Lee ) , 이창욱 ( Chang Wook Lee ) , 황의홍 ( Eui Hong Hwang ) , 김기연 ( Ki Yeon Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 259-274 (16 pages)

다운로드

(기관인증 필요)

초록보기

2013년 8월 18일 일본의 사쿠라지마 화산에서 비교적 큰 규모의 분화가 발생하였다. 이에 본 연구에서는 천리안 위성 자료를 이용하여 화산분화 다음날 주변 지역의 화산재를 감지하였으며, 기상청 청양 지자기 관측소 자료와 함께 일본 지자기 관측소 자료를 이용하여 지자기 변동에 대해 분석하였다. 먼저, 지자기 관측 자료를 이용하여 주성분 분석을 수행하고 관측 자료의 재구성 자료를 구축하였다. 재구성된 자료는 웨이블릿 기반 셈블런스 분석을 수행하였다. 다음으로는 지자기 관측 자료의 고유값 분석을 수행하고 Kp 지수와의 웨이블릿 기반 셈블런스 필터링을 통해서 태양의 영향을 최소화하였다. 분석결과에서는 전체적으로 화산 발생 시점에서 이벤트가 발생하는 것을 확인 할 수 있었다. 다만, 일부 지자기 관측소의 경우 화산이 아닌 다른 영향을 받았을 가능성을 배제 할 수 없다. 이 연구에서는 국내 연구로는 드물게 화산 분화에 의한 지자기 영향을 분석하였으며 향후 지진·화산 연구에 도움이 될 수 있을 것으로 기대한다.

KCI등재

10정지궤도 천리안위성 해양관측센서GOCI의 Tasseled Cap 변환계수 산출연구

저자 : 원중선 ( Joong Sun Won ) , 박욱 ( Wook Park ) , 신지선 ( Ji Sun Shin )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 275-292 (18 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 Geostationary Ocean Color Imager(GOCI) 센서에 적용할 수 있는 고유의 Tasseled Cap Transformation(TCT) 계수를 제시하고 있다. TCT는 다중밴드 센서 자료로부터 지표의 특성을 분석하는 전통적인 영상변환 방법 중 하나로 새로운 다중밴드 광학센서가 관측을 시작하는 경우 센서의 특성 차이로 인하여 각각의 육상관측 위성센서에 적합한 TCT 계수들이 장기 분석을 통하여 수립되어야 한다. GOCI 센서는 해양관측이 주 목적으로 개발되었으나 영상의 상당 부분은 육지를 관측하고 있으며 밴드 구성은 육지관측에도 일반적으로 이용되는 Visible-Near InfraRed(VNIR) 영역의 정보를 포함하고 있다. 또한 GOCI 센서의 높은 시간 해상도는 지표의 일별 변화의 관측에도 유용하게 사용될 수 있다. 이러한 장점을 이용하여 GOCI 센서에 대한 고유한 TCT가 제공된다면 GOCI 센서의 관측범위 내에서 준 실시간으로 지표변화에 대한 분석과 해석이 가능할 것이다. TCT는 일반적으로 ”Brightness”, ”Greenness”, “Wetness”의 세 가지 정보를 포함하지만, ShortWave InfraRed(SWIR) 파장대역이 없는 GOCI 센서의 경우에는 ”Wetness”의 정보를 얻을 수 없다. GOCI 센서의 높은 시간 해상도의 활용을 극대화하기 위해서는 “Wetness”의 정보가 제공되어야 한다. “Wetness”의 정보를 얻기 위해 GOCI 주성분 분석(Principal Component Analysis: PCA) 공간을 MODIS TCT 공간에 선형 회귀하는 방법이 사용되었다. 이 연구에서 산출된 GOCI TCT 계수는 정지궤도의 특성에 의해 관측 시간대별로 다른 변환계수를 가질 수 있다. 이 차이를 알아보기 위하여 GOCI TCT 자료와 MODIS TCT 자료 사이의 상관관계가 비교되었다. 그 결과, “Brightness”와 “Greenness”는 4시 자료, “Wetness”는 2시 자료의 변환계수가 선택되었다. 최종적으로 산출된 변환계수의 적절성을 평가하기 위하여 GOCI TCT 자료는 MODIS TCT 영상 및 여러 육상 파라미터들과 비교되었다. GOCI TCT 영상은 MODIS TCT 영상보다 지표 피복의 분류가 더 세밀하게 표현되었으며, GOCI TCT 공간의 지표 피복 분포도 유의미한 결과를 보여줬다. 또한 GOCI TCT의 “Brightness”, “Greenness”, “Wetness” 자료는 Albedo(R2 = 0.75), Normalized Difference Vegetation Index(NDVI) (R2 = 0.97), Normalized Difference Moisture Index(NDMI) (R2 = 0.77)와 각각 비교적 높은 상관관계가 나타났다. 이러한 결과들은 적절한 TCT 계수의 산출이 이루어졌다는 것을 보여준다.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기