논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> 고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석

KCI등재

고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석

Comparative Analysis of Image Fusion Methods According to Spectral Responses of High-Resolution Optical Sensors

이하성 ( Ha Seong Lee ) , 오관영 ( Kwan Young Oh ) , 정형섭 ( Hyung Sup Jung )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 30권2호
  • : 연속간행물
  • : 2014년 04월
  • : 227-239(13pages)
대한원격탐사학회지

DOI


목차

1. 서 론
2. 실험 및 평가방법
3. 결과 및 분석
4. 결론
사 사
References

키워드 보기


초록 보기

본 연구는 서로 다른 센서 특성을 지닌 KOMPSAT-2, QuickBird 및 WorldView-2 고해상도 위성영상에 영상융합기법을 적용하여 그 결과를 비교평가 하는 것이다. 사용된 기법은 대표적인 CS 기반 융합기법인 GIHS, GIHSA, GS1 및 Adaptive IHS를 사용하였다. 영상융합 기법의 품질평가는 시각적 분석과 정량적 분석을 수행하였으며, 정량적 분석에는 SAM, Spectral ERGAS 및 Q4을 사용하였다. KOMPSAT-2 영상은 GHISA 기법의 경우 상대적으로 우수한 성능을 나타내는 반면, QuickBird와 WorldView-2영상은 GS1기법의 경우에 우수한 성능을 나타낸다.
This study aims to evaluate performance of various image fusion methods based on the spectral responses of high-resolution optical satellite sensors such as KOMPSAT-2, QuickBird and WorldView-2. The image fusion methods used in this study are GIHS, GIHSA, GS1 and AIHS. A quality evaluation of each image fusion method was performed with both quantitative and visual analysis. The quantitative analysis was carried out using spectral angle mapper index (SAM), relative global dimensional error (spectral ERGAS) and image quality index (Q4). The results indicates that the GIHSA method is slightly better than other methods for KOMPSAT-2 images. On the other hand, the GS1 method is suitable for Quickbird and WorldView-2 images.

UCI(KEPA)

I410-ECN-0102-2015-400-000461591

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1815


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권5호(2022년 10월) 수록논문
최근 권호 논문
| | | |

KCI등재

1습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구

저자 : 홍상훈 ( Sang-hoon Hong ) , Shimon Wdowinski

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 447-460 (14 pages)

다운로드

(기관인증 필요)

초록보기

인공위성 영상레이더 위상간섭기법은 널리 활용되고 있는 원격탐사 기술로서 지진, 화산, 지반침하 등으로부터 발생한 단단한 지각 표면의 변위를 매우 정밀하게 주기적으로 관측할 수 있는 연구 활용분야의 한 종류이다. 습지대 환경처럼 수상 표면에 식생이 존재하는 경우에는 지표면과 동일한 방법을 적용하여 넓은 지역에 대한 높은 공간해상도의 수위 변화 지도 제작이 가능하다. 현재 다양한 파장 대역의 인공위성 영상레이더 시스템이 운용 중에 있으며 여기에는 넓은 지역에 대한 영상을 효과적으로 획득할 수 있는 광역 관측 ScanSAR 모드를 제공하는 위성도 다수 포함되어 있다. 본 논문의 연구 지역인 콜롬비아 북부의 Ciénaga Grande de Santa Marta (CGSM) 습지대는 카리브 해안을 따라 고지대에 위치한 광대한 습지 지역이다. CGSM 습지대는 해수면 상승과 기후 변화와 같은 자연적인 원인 뿐만 아니라 20세기 후반부터 시작된 농업개발 및 도시확장 등의 다양한 인간 활동으로 인한 심각한 환경적 위협을 받고 있다. 최근 해당 습지 지역에 대한 생태학적 중요성이 대두되면서 해당 습지를 보호하고 복원하기 위한 다양한 계획이 진행 중에 있다. 주기적인 습지대 환경 모니터링에 있어 수위 변화 관측은 매우 중요한 자료를 제공하며 일반적으로 수위계와 같은 현장관측 자료 등에 의존하는 경우가 많다. 수위계의 경우 시간적으로 연속적인 자료 관측이 가능하지만 공간적 분포를 이해하기에는 어려운 경우가 많다. 본 연구에서는 현장 관측의 공간적 해상도의 부족함을 보완하기 위한 L-밴드 ALOS-2 PALSAR-2 ScanSAR 광역 관측 모드 자료의 영상레이더 위상간섭기법 습지대 수위 변화 관측 활용 가능성에 대해 평가하고자 한다. 광역 관측 모드의 공간해상도 및 위상간섭도 품질 비교를 위해 ALOS-2 PALSAR-2 stripmap 고해상 모드와 함께 분석하였다.


It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

KCI등재

2시계열 토지피복도 제작을 위한 준감독학습 기반의 훈련자료 자동 추출

저자 : 곽근호 ( Geun-ho Kwak ) , 박노욱 ( No-wook Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 461-469 (9 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 시계열 토지피복도를 제작하기 위해 분석자 개입 없이 준감독학습 기반 분류를 이용하는 새로운 훈련자료 추출 기법을 제안하였다. 준감독학습 기반 훈련자료 추출 기법은 먼저 분류 대상 영상과 유사한 토지피복 특성을 포함하는 과거 영상으로부터 획득한 초기 훈련자료를 이용하여 초기 분류를 수행한다. 이후, 분류의 불확실성 정보와 인접 화소의 분류 항목을 제약 조건으로 이용하는 준감독학습 기반 반복 분류를 이용하여 초기 분류 결과로부터 신뢰할 수 있는 훈련자료를 추출한다. 준감독학습 기반 훈련자료 추출 기법의 적용 가능성은 농경지에서 unmanned aerial vehicle 영상을 이용하는 분류 실험을 통해 평가되었다. 제안한 준감독학습 기반 훈련자료 추출 기법에 의해 자동으로 추출된 새로운 훈련자료를 이용하는 것은 초기 분류 결과에서 나타난 오분류를 두드러지게 완화할 수 있었다. 특히, 인접 화소의 공간 문맥 정보를 고려함으로써 고립된 화소가 크게 감소하였다. 결과적으로, 제안 기법의 분류 정확도는 수동으로 추출한 훈련자료를 이용하는 분류 정확도와 유사하였다. 이러한 결과는 이 연구에서 제시한 준감독학습 기반 반복 분류가 시계열 토지피복도를 제작하기 위해 신뢰할 수 있는 훈련자료를 자동으로 추출하는데 효과적으로 적용될 수 있음을 나타낸다.


This paper presents a novel training data extraction approach using semi-supervised learning (SSL)-based classification without the analyst intervention for time-series land-cover mapping. The SSL-based approach first performs initial classification using initial training data obtained from past images including land-cover characteristics similar to the image to be classified. Reliable training data from the initial classification result are then extracted from SSL-based iterative classification using classification uncertainty information and class labels of neighboring pixels as constraints. The potential of the SSL-based training data extraction approach was evaluated from a classification experiment using unmanned aerial vehicle images in croplands. The use of new training data automatically extracted by the proposed SSL approach could significantly alleviate the misclassification in the initial classification result. In particular, isolated pixels were substantially reduced by considering spatial contextual information from adjacent pixels. Consequently, the classification accuracy of the proposed approach was similar to that of classification using manually extracted training data. These results indicate that the SSL-based iterative classification presented in this study could be effectively applied to automatically extract reliable training data for time-series land-cover mapping.

KCI등재

3전산유체역학 모델을 활용한 여름철 종관기상관측소의 기온과 바람 관측 환경 평가

저자 : 강정은 ( Jung-eun Kang ) , 노주환 ( Ju-hwan Rho ) , 김재진 ( Jae-jin Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 471-484 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 전산유체역학 모델을 이용하여 기상청에서 운용하는 종관기상관측소(automated synoptic observing system, ASOS) 10개 지점을 대상으로 ASOS 주변 지형과 건물이 기온과 바람(풍속, 풍향) 관측 환경에 미치는 영향을 분석하였다. ASOS에서 최근 10년간 8월의 관측 자료를 기반으로 전산유체역학(computational fluid dynamics, CFD) 모델의 초기·경계 자료를 구축하였다. 실제 토지 피복을 고려한 경우와 모든 피복을 초지로 가정한 경우에 대해, 관측 고도에서 초기 기온 대비 기온 변화율을 비교함으로써 기온 관측 환경을 분석하였다. 기온 관측 환경은 관측 지점 주위의 토지 피복에 의한 영향을 많이 받았다. ASOS 주변에 지표면 온도가 높은 건물과 도로가 밀집한 경우에 기온 변화율이 크게 나타났다. 반면, 모든 토지 피복을 초지로 가정한 경우에는 초기 기온 대비 기온 변화율이 작았다. 실제 토지 피복을 고려하여 관측 고도의 유입류 대비 풍속 변화율과 풍향 변화를 비교함으로써 풍속과 풍향 관측 환경을 분석하였다. 풍속과 풍향은 ASOS 주변에 관측 고도보다 높거나 비슷한 높이의 지형과 건물 영향을 크게 받았으며, 원거리에 위치한 장애물에 의한 영향도 나타났다. 본 연구 결과는 종관기상관측소의 이전과 신설 단계에서 관측 환경 평가에 활용될 것이다.


This study examined the effects of topography and buildings around the automated synoptic observing system (ASOS) on the observation environment of air temperatures and wind speeds and directions using a computational fluid dynamics (CFD) model. For this, we selected 10 ASOSs operated by the Korea Meteorological Administration. Based on the data observed at the ASOSs in August during the recent ten years, we established the initial and boundary conditions of the CFD model. We analyzed the temperature observation environment by comparing the temperature change ratios in the case considering the actual land-cover types with those assuming all land-cover types as grassland. The land-cover types around the ASOSs significantly affected the air temperature observation environment. The temperature change ratios were large at the ASOSs around which buildings and roads were dense. On the other hand, when all land covers were assumed as grassland, the temperature change ratios were small. Wind speeds and directions at the ASOSs were also significantly influenced by topography and buildings when their heights were higher or similar to the observation heights. Obstacles even located at a long distance affected the wind observation environments. The results in this study would be utilized for evaluating ASOS observation environments in the relocating or newly organizing steps.

KCI등재

4RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험

저자 : 김광섭 ( Kwangseob Kim ) , 이기원 ( Kiwon Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 485-496 (12 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서 RapidEye 위성영상 대기 및 지표반사도 산출물을 생성하는 소프트웨어를 구현하였다. 이 소프트웨어는 절대대기보정 알고리즘을 채택하고 있는 오픈소스 원격탐사 소프트웨어 Orfeo Toolbox (OTB) 기반 Extension이다. 소프트웨어 성능을 확인하기 위하여 구현 결과인 산출물 정확도는 Radiometric Calibration Network (RadCalNet) 사이트의 데이터와 해당 위치에 촬영된 RapidEye 영상을 사용하여 검증하고자 하였다. 또한 거의 같은 일자에 같은 지역을 촬영한 KOMPSAT-3A 영상으로부터 생성한 지표반사도와 Landsat Analysis Ready Data (ARD) 제품 중 하나인 지표반사도 자료도 함께 비교하였다. 이 외에도 같은 영상에 대하여 상업 도구에서 지원하는 QUick Atmospheric Correction (QUAC)와 Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 도구를 적용한 처리 결과와 직접 비교 연구를 수행하였다. RadCalNet 자료에 대비하여 KOMPSAT 지표반사도와 마찬가지로 이 Extension에서 얻은 결과는 5% 이내 일치 수준의 정확도를 나타내었고 QUAC와 FLAASH를 이용한 결과에 비하여 모든 밴드 영상에서 상대적으로 우수한 정확도를 보이는 것으로 나타났다. 농업, 산림이나 환경 분야에서 Red-Edge 밴드의 중요성이 강조되고 있기 때문에 이 소프트웨어를 이용하여 산출되는 RapidEye 영상의 지표반사도 활용도 증가할 것으로 기대한다.


This study is for the software implementation to generate atmospheric and surface reflectance products from RapidEye satellite imagery. The software is an extension based on Orfeo Toolbox (OTB) and an open-source remote sensing software including calibration modules which use an absolute atmospheric correction algorithm. In order to verify the performance of the program, the accuracy of the product was validated by a test image on the Radiometric Calibration Network (RadCalNet) site. In addition, the accuracy of the surface reflectance product generated from the KOMPSAT-3A image, the surface reflectance of Landsat Analysis Ready Data (ARD) of the same site, and near acquisition date were compared with RapidEye-based one. At the same time, a comparative study was carried out with the processing results using QUick Atmospheric Correction (QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool supported by a commercial tool for the same image. Similar to the KOMPSAT-3A-based surface reflectance product, the results obtained from RapidEye Extension showed accuracy of agreement level within 5%, compared with RadCalNet data. They also showed better accuracy in all band images than the results using QUAC or FLAASH tool. As the importance of the Red-Edge band in agriculture, forests, and the environment applications is being emphasized, it is expected that the utilization of the surface reflectance products of RapidEye images produced using this program will also increase.

KCI등재

5농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용

저자 : 이슬찬 ( Seulchan Lee ) , 정재환 ( Jaehwan Jeong ) , 오승철 ( Seungcheol Oh ) , 정하규 ( Hagyu Jeong ) , 최민하 ( Minha Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 497-510 (14 pages)

다운로드

(기관인증 필요)

초록보기

농업용 저수지는 수자원이 계절적으로 편중된 한반도에서 갈수기 용수 공급을 위한 필수적인 구조물이다. 효율적인 물 관리를 위해서는 중소규모 저수지에 대한 체계적이고 효과적인 모니터링이 필요하며, 합성개구 레이더(Synthetic Aperture Radar, SAR) 영상은 전천후 관측이 가능하다는 특징과 함께 연속적인 저수지 모니터링을 위한 도구가 된다. 본 연구에서는 10 m급 해상도를 갖는 Sentinel-1 SAR 영상과 1 m급 해상도의 Capella XSAR 영상을 활용하여 울산광역시 차리, 갈전, 뒷골 저수지의 수체를 탐지하였으며, 이를 통해 국내 중소규모 저수지 모니터링에의 활용성을 평가하고자 하였다. Z fuzzy function 기반 임계값 산정을 통한 영상분할기법과 객체 탐지 기반 분할기법인 Chan-vese (CV) 기법을 통해 수체 영역을 산정하였으며, UAV 영상과의 비교를 통해 성능을 정량적으로 평가하였다. 임계값 기반 탐지 정확도는 Sentinel-1의 경우 약 0.87, 0.89, 0.77 (차리, 갈전, 뒷골), Capella의 경우 약 0.78, 0.72, 0.81로 나타났으며, CV 기법 적용 시 모든 저수지에서 정확도가 향상되는 것을 확인하였다(Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Capella는 모든 저수지/분할기법에 대해 수체와 비수체의 경계를 비교적 뚜렷하게 모의하였으나, 고해상도로 인한 speckle noise가 충분히 평활화되지 않아 오탐지 및 미탐지가 다소 발생하였다. 오탐지의 제거를 위해 광학 센서 기반 보조자료를 활용하여 마스킹한 결과, 정확도가 최대 13% 향상되는 것을 확인할 수 있었다. 본 연구 결과를 바탕으로 SAR 위성 기반 더욱 정확한 저수지 탐지가 이루어진다면 소규모 저수지를 포함, 종합적인 가용수량에 대한 연속적인 모니터링이 가능할 것이며, 효과적인 수자원 관리에 기여할 수 있을 것으로 기대된다.


Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

KCI등재

6DeepLabV3+를 이용한 이종 센서의 구름탐지 기법 연구

저자 : 김미정 ( Mi-jeong Kim ) , 고윤호 ( Yun-ho Ko )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 511-521 (11 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

위성영상에서의 구름 탐지 및 제거는 지형관측과 분석을 위해 필수적인 과정이다. 임계값 기반의 구름 탐지 기법은 구름의 물리적인 특성을 이용하여 탐지하므로 안정적인 성능을 보여주지만, 긴 연산시간과 모든 채널의 영상 및 메타데이터가 필요하다는 단점을 가지고 있다. 최근 활발히 연구되고 있는 딥러닝을 활용한 구름탐지 기법은 4개 이하의 채널(RGB, NIR) 영상만을 활용하고도 짧은 연산시간과 우수한 성능을 보여주고 있다. 본 논문에서는 해상도가 다른 이종 데이터 셋을 활용하여 학습데이터 셋에 따른 딥러닝 네트워크 성능 의존도를 확인하였다. 이를 위해 DeepLabV3+ 네트워크를 구름탐지의 채널 별 특징이 추출되도록 개선하고 공개된 두 이종 데이터 셋과 혼합 데이터로 각각 학습하였다. 실험결과 테스트 영상과 다른 종류의 영상으로만 학습한 네트워크에서는 낮은 Jaccard 지표를 보여주었다. 그러나 테스트 데이터와 동종의 데이터를 일부 추가한 혼합 데이터로 학습한 네트워크는 높은 Jaccard 지표를 나타내었다. 구름은 사물과 달리 형태가 구조화 되어 있지 않아 공간적인 특성보다 채널 별 특성을 학습에 반영하는 것이 구름 탐지에 효과적이므로 위성 센서의 채널 별 특징을 학습하는 것이 필요하기 때문이다. 본 연구를 통해 해상도가 다른 이종 센서의 구름탐지는 학습 데이터 셋에 매우 의존적임을 확인하였다.


Cloud detection and removal from satellite images is an essential process for topographic observation and analysis. Threshold-based cloud detection techniques show stable performance because they detect using the physical characteristics of clouds, but they have the disadvantage of requiring all channels' images and long computational time. Cloud detection techniques using deep learning, which have been studied recently, show short computational time and excellent performance even using only four or less channel (RGB, NIR) images. In this paper, we confirm the performance dependence of the deep learning network according to the heterogeneous learning dataset with different resolutions. The DeepLabV3+ network was improved so that channel features of cloud detection were extracted and learned with two published heterogeneous datasets and mixed data respectively. As a result of the experiment, clouds' Jaccard index was low in a network that learned with different kind of images from test images. However, clouds' Jaccard index was high in a network learned with mixed data that added some of the same kind of test data. Clouds are not structured in a shape, so reflecting channel features in learning is more effective in cloud detection than spatial features. It is necessary to learn channel features of each satellite sensors for cloud detection. Therefore, cloud detection of heterogeneous sensors with different resolutions is very dependent on the learning dataset.

KCI등재

7영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험

저자 : 박소연 ( Soyeon Park ) , 강솔아 ( Sol A Kang ) , 박노욱 ( No-wook Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 523-533 (11 pages)

다운로드

(기관인증 필요)

초록보기

이 논문에서는 상호보완적인 공간 및 분광해상도를 가진 다중센서 위성영상을 이용하여 공간해상도와 분광해상도를 향상시키기 위해 영역-점 회귀 크리깅(area-to-point regression kriging, ATPRK) 기반의 2단계 spatio-spectral fusion method (2SSFM)을 제안하였다. 2SSFM은 ATPRK와 random forest 회귀 모형을 결합하여 다중센서 위성영상에서 높은 공간해상도를 갖는 분광 밴드를 예측한다. 첫 번째 단계에서는 다중센서 위성영상 사이의 공간해상도 차이를 감소시키기 위해 ATPRK 기반 공간 상세화를 수행한다. 두 번째 단계에서는 다중센서 위성영상 사이의 분광 밴드의 관계성을 정량화하기 위해 random forest를 이용한 회귀 모델링을 적용하였다. 2SSFM의 예측 성능은 적색 경계와 단파 적외선 밴드를 생성하는 사례 연구를 통해 평가하였다. 사례 연구에서 2SSFM은 실제 분광 밴드와 유사한 분광패턴을 보이면서 공간해상도가 향상된 적색 경계와 단파 적외선 밴드를 생성할 수 있었으며, 2SSFM가 고해상도 위성영상에서 제공하지 않은 분광 밴드 생성에 유용함을 확인할 수 있었다. 따라서 2SSFM을 통해 실제로 획득 불가능하지만 환경 모니터링에 효과적인 분광 밴드를 예측함으로써 다양한 분광 지수를 생성할 수 있을 것으로 기대된다.


This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial downscaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

KCI등재

8드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발

저자 : 류재현 ( Jae-hyun Ryu ) , 한중곤 ( Jung-gon Han ) , 안호용 ( Ho-yong Ahn ) , 나상일 ( Sang-il Na ) , 이병모 ( Byungmo Lee ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 535-543 (9 pages)

다운로드

(기관인증 필요)

초록보기

농업분야에서 드론을 활용하여 작물의 생육을 진단하고 정보를 영상으로 제공하고 있다. 들녘 단위에 대한 고해상도 드론 영상을 활용하는 경우 객체별 생육정보를 생산할 수 있으나 정확하게 작물을 탐지하고 인접한 객체를 효율적으로 구분하기 위한 작업이 요구된다. 본 연구에서는 작물 객체를 탐지하고 위치 정보를 추출하는 알고리즘을 개발하는 것이 목적이다. 드론 다중분광영상과 컴퓨터 비전 기술을 활용하여 객체 탐지를 위한 알고리즘을 개발하였으며, 대상 작물은 가을배추로 선정하였다. 2018년~2020년까지 가을배추를 대상으로 정식 후 7일~15일 사이의 드론 영상을 취득하였으며, 2019년 영상 기반으로 객체 탐지 알고리즘을 개발한 뒤 2018년, 2020년 영상을 기반으로 알고리즘 평가를 수행하였다. 분광반사도 기반 지수와 식생의 분광 반사도 특성을 고려하여 식생 지역을 추출하였다. 이후 추출된 식생 지역에서 객체의 크기를 고려하여 팽창(Dilatation), 침식(Erosion), 이미지 분할 등과 같은 모폴로지(Morphology) 기법을 통해 객체 탐지 정확도를 향상시켰다. 개발된 객체 탐지 알고리즘의 정밀도는 95.19% 이상이었으며, 재현율과 정확도는 각각 95.4%, 93.68% 이상이었다. 객체 탐지 알고리즘의 F1-Score는 0.967 이상으로 나타났다. 본 연구에서 개발한 알고리즘을 이용하여 추출된 배추 객체 중심에 대한 위치 정보는 작물의 재배시기에 따라 영농단계별 의사결정 정보를 제공하기 위한 자료로써 활용될 것이다.


A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.

KCI등재

9Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구

저자 : 이슬기 ( Seulki Lee ) , 송종성 ( Jong-sung Song ) , 이창욱 ( Chang-wook Lee ) , 고보균 ( Bokyun Ko )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 545-557 (13 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

본 연구는 직접적인 접근이 어려운 demilitarized zone (DMZ)의 산불 피해 지역을 파악하기 위하여, 고해상도 위성영상 및 머신러닝 기반의 감독 분류 기법을 이용하였다. 고해상도 위성 영상은 Sentinel-2 A/B를 이용하였으며, SVM 감독분류 기법을 기반으로 토지피복도를 산출하였다. DMZ 산불 피해 지역을 분류하기 위한 최적의 조합을 찾기 위하여 SVM 내에 다양한 커널과 밴드 조합에 따른 감독 분류를 진행하고 오차 행렬을 통해 정확도를 평가하였다. 또한, 2020년, 2021년은 위성영상 자료 기반의 산불 탐지 결과와 산불 연보의 피해 지역 면적 간의 비교를 통한 검증을 수행하였다. 이후, 현재 피해 면적 자료가 없는 2022년의 산불 피해 지역을 탐지함으로써 신뢰할 만한 수준의 결과를 신속적으로 파악하고자 하였다.


This study used high-resolution satellite images and supervised classification technique based on machine learning method in order to detect the areas affected by wildfires in the demilitarized zone (DMZ) where direct access is difficult. Sentinel-2 A/B was used for high-resolution satellite images. Land cover map was calculated based on the SVM supervised classification technique. In order to find the optimal combination to classify the DMZ wildfire damage area, supervised classification according to various kernel and band combinations in the SVM was performed and the accuracy was evaluated through the error matrix. Verification was performed by comparing the results of the wildfire detection based on satellite image and data by the wildfire statistical annual report in 2020 and 2021. Also, wildfire damage areas was detected for which there is no current data in 2022. This is to quickly determine reliable results.

KCI등재

10광학 위성 영상 기반 선박탐지의 정확도 개선을 위한 딥러닝 초해상화 기술의 영향 분석

저자 : 박성욱 ( Seongwook Park ) , 김영호 ( Yeongho Kim ) , 김민식 ( Minsik Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 559-570 (12 pages)

다운로드

(기관인증 필요)

초록보기

광학 위성 영상의 공간해상도가 낮게 되면 크기가 작은 객체들의 경우 객체 탐지의 어려움이 따른다. 따라서 본 연구에서는 위성 영상의 공간해상도를 향상시키는 초해상화(Super-resolution) 기술이 객체 탐지 정확도 향상에 대한 영향이 유의미한지 알아보고자 하였다. 쌍을 이루지 않는(unpaired) 초해상화 알고리즘을 이용하여 Sentinel-2 영상의 공간해상도를 3.2 m로 향상시켰으며, 객체 탐지 모델인 Faster-RCNN, RetinaNet, FCOS, S2ANet을 활용하여 초해상화 적용 유무에 따른 선박 탐지 정확도 변화를 확인했다. 그 결과 선박 탐지 모델의 성능 평가에서 초해상화가 적용된 영상으로 학습된 선박 탐지 모델들에서 Average Precision (AP)가 최소 12.3%, 최대 33.3% 향상됨을 확인하였고, 초해상화가 적용되지 않은 모델에 비해 미탐지 및 과탐지가 줄어듦을 보였다. 이는 초해상화 기술이 객체 탐지에서 중요한 전처리 단계가 될 수 있다는 것을 의미하고, 객체 탐지와 더불어 영상 기반의 다른 딥러닝 기술의 정확도 향상에도 크게 기여할 수 있을 것으로 기대된다.


When a satellite image has low spatial resolution, it is difficult to detect small objects. In this research, we aim to check the effect of super resolution on object detection. Super resolution is a software method that increases the resolution of an image. Unpaired super resolution network is used to improve Sentinel-2's spatial resolution from 10 m to 3.2 m. Faster-RCNN, RetinaNet, FCOS, and S2ANet were used to detect vessels in the Sentinel-2 images. We experimented the change in vessel detection performance when super resolution is applied. As a result, the Average Precision (AP) improved by at least 12.3% and up to 33.3% in the ship detection models trained with the super-resolution image. False positive and false negative cases also decreased. This implies that super resolution can be an important pre-processing step in object detection, and it is expected to greatly contribute to improving the accuracy of other image-based deep learning technologies along with object detection.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1C-밴드 다중시기 SAR 위성 영상을 이용한 녹산국가산업단지 일대의 지반침하 관측

저자 : 이창욱 ( Chang Wook Lee ) , 조민지 ( Min Ji Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 161-172 (12 pages)

다운로드

(기관인증 필요)

초록보기

녹산국가산업단지가 설립된 부산 낙동강 하류는 국내에서 연약지반이 가장 깊이 분포하고 있는 지역 중에 하나이다. 연약지반의 깊이가 깊은 해안 매립지의 경우, 장기간에 걸쳐 상당히 큰 잔류침하가 발생하게 된다. 본 연구는 RADARSAT-1과 Envisat의 다중시기 SAR 영상을 이용한 차분간섭기법과 SBAS 시계열 기법을 통해, 녹산산업국가단지에서 2002년 9월부터 2007년 4월 동안에 발생된 지반침하를 관측하였다. 그 결과 연구지역의 동쪽 중앙, 서쪽 중앙, 서쪽, 해안가와 닿아있는 남단에서 최대 10 cm/yr, 평균 6 cm/yr의 속도로 지반침하가 발생되고 있음을 확인하였다. 또한 RADARSAT-1 SAR 영상을 이용한 평균지표변위도는 2001년부터 2002년까지 침하계로 관측된 현장관측자료와 비교·분석되었다. 시간에 따른 지표변위 양상이 거의 선형에 가깝게 나타나므로, 연구지역의 지반침하가 안정권에 접어들 때까지 지속적인 모니터링이 필요할 것으로 사료된다

KCI등재

2화성쇄설류 분출 지역의 감시를 위한 광학영상과 화성쇄설류 범람 예측 모델링 분석

저자 : 이창욱 ( Chang Wook Lee ) , 이사로 ( Sa Ro Lee ) , 조민지 ( Min Ji Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 173-183 (11 pages)

다운로드

(기관인증 필요)

초록보기

화산활동으로 인한 피해를 현장관측을 통해 조사할 경우, 비용과 인력, 안전 등의 문제로 인한 어려움이 많다. 인공위성 영상을 활용한 원격탐사는 이와 같은 문제를 극복하기에 매우 유용한 도구 중에 하나이다. 본 연구에서는 2009년 4월 17일과 2012년 7월 30일에 획득된 Landsat 7 ETM+ 위성 영상을 이용하여 인도네시아 수마트라 섬에 위치한 시나붕 화산의 2010년 화산활동을 관측하였다. 피복분류를 통해 2010년 분화 전·후의 화성쇄설류 범람 지역을 추출한 결과, 2010년 분화로 인해 화성쇄설류 범람 지역의 면적이 약 3배나 증가한 것을 확인하였다. 화성쇄설류 범람 지역 예측 모델링으로 얻어진 결과는 Landsat 영상에서 추출된 화성쇄설류 범람 지역과 비교되었다. 그 결과, 화성쇄설류 범람 지역 예측 모델링은 범람의 거리(길이)는 92%로 정확하게 계산되었지만 화산의 경사가 급격한 지역에서는 범람의 폭이 다소 부정확하게 계산되어 17%의 정확도를 나타내었다

KCI등재

3미분을 이용한 단일채널 SAR SLC 영상 내 지상 이동물체의 탐지방법

저자 : 원중선 ( Joong Sun Won )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 185-205 (21 pages)

다운로드

(기관인증 필요)

초록보기

SAR를 이용한 지상이동물체탐지(GMTI)는 SAR의 주요 활용 기술 중 하나이다. 최근 위성 탑재 SAR 시스템의 해상도가 높아지면서 지상이동목표물 탐지의 유용성은 더욱 강조되고 있다. 현재까지 다양한 지상이동물체탐지 기법이 개발되었으나 대부분은 다중채널 SAR 시스템을 이용하는 기술에 집중되었다. 그러나, 아직도 단일채널 SAR 영상으로부터 지상 이동물체를 탐지하는 것은 매우 어려운 문제로 남아 있는 반면 다중채널 위성 탑재 SAR 시스템은 아직은 그 활용이 현실적으로 매우 제한적인 상황이다. 일단 지상의 목표물이 탐지되고 이동속도가 3 m/s(약 10.8 km/h) 이상인 경우 그 목표물의 이동속도는 단일채널 SAR 자료라도 오차범위 약 5%의 정밀도로 복원 가능하다. 따라서 단일채널 SAR 자료로부터 지상의 이동물체 자체를 탐지하는 것이 핵심이며, 이 논문에서는 SAR Single-Look Complex(SLC) 영상자료에 미분을 적용하여 쉽고 빠르게 탐지하는 방법을 제시한다. 이 논문에서는 SAR SLC 자료의 미분 값은 도플러 중심주파수를 나타냄을 유도하고, 따라서 미분 값은 지상이동물체 탐지에 매우 효과적임을 설명하고자 한다. 이 논문에서 제시하는 미분 방법의 결과와 정밀한 속도복원 방법의 상관계수 R2 는 0.62로 나타났으며, 이는 이동물체를 탐지하는 데는 충분함을 지시한다. 이 방법은 매우 단순한 미분으로 도플러 중심주파수 분석에 근거하고 있으나 최종 자료처리에 앞서 도플러 경사도를 제거해야 하며, 적용결과의 효율성과 신뢰도는 이 도플러 경사도 제거 과정에 크게 좌우된다. 지상에 모서리 산란체를 탑재하고 이동속도를 조절한 실험용 차량과 이를 관측한 TerraSAR-X SLC 자료를 이용하여 검증을 실시하였다. 검증결과 지상 이동물체를 매우 쉽게 탐지하면서도 정지된 상태의 강한 산란체는 약 18.5 dB의 신호파워를 줄여 효과적으로 제거 하는 것으로 나타났다. 현재 이 방법은 지상의 이동속도 8.8 km/h 이상인 경우 매우 효과적이며, 아리랑-5호를 비롯한 모든 단일채널 SAR 시스템에 적용 가능하다.

KCI등재

4고해상도 수치항공정사영상기반 하천토지피복지도 제작을 위한 분류기법 연구

저자 : 김영진 ( Young Jin Kim ) , 차수영 ( Su Young Cha ) , 조용현 ( Young Hyeon Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 207-218 (12 pages)

다운로드

(기관인증 필요)

초록보기

하천을 복원하거나 정비하는데 있어서 중요한 하천의 실태를 파악하는데, 하천 피복상태 정보는 매우 중요하다. 본 연구의 목적은 하천의 피복상태 정보를 효율적이고 경제적으로 획득하기 위해 고해상도 항공정사영상의 효과적인 분류를 위한 감독분류 방법을 시험하고 하천토지피복지도 작성을 위한 최적 분류 방법을 검증하였다. 항공 정사영상의 CIR 영상과 RGB 영상을 이용한 하천토지피복 분석과정은 하천토지피복분류 항목 선정, 감독분류, 정확도 평가 및 분류지도 작성의 순서로 수행하였다. 분류 항목은 수역, 도로, 건물, 초지, 산림, 나지, 밭의 7가지 항목을 선정하였다. 감독 분류 알고리즘으로는 최대우도분류, 최소거리분류, 평행육면체분류, 마하라노비스거리분류 기법을 적용하였다. 감독분류의 분류정확도를 개선하기 위해 필터링과 훈련지역의 왜도 검증을 수행한 결과 CIR 영상을 이용한 최대우도분류 기법이 가장 높은 정확도를 보였다.

KCI등재

5수정된 IEA 기반의 분광혼합분석 기법을 이용한 임상분류

저자 : 한유경 ( You Kyung Han ) , 김용일 ( Yong Il Kim ) , 김용현 ( Young Hyun Kim ) , 송아람 ( Ah Ram Song )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 219-226 (8 pages)

다운로드

(기관인증 필요)

초록보기

분광혼합분석 결과로 얻어지는 각 물체의 점유비율을 활용하면 보다 세밀한 분류가 가능하다. 이는 복잡한 도심지역의 피복분류 뿐만 아니라 혼효림이 많은 한반도 임상분류에 적합한 분류기법이 될 수 있다. 효과적인 임상분류를 위해서는 무엇보다 적절한 endmember의 추출이 선행되어야 하는데, 기존에 주로 사용되었던 기하학적 방법(geometric endmember selection)은 분광특성이 유사한 산림지역에 적합하지 않다. 본 연구에서는 영상에서 직접 순수한 화소를 추출하는 기법 중의 하나인 IEA(Iterative Error Analysis)와 침엽수와 활엽수의 분광특성을 이용하여 실험지역을 대표할 수 있는 각각의 endmember를 자동으로 추출하였다. CASI(Compact Airborne Spectrographic Imager) 영상의 두 지역에 대하여 분광혼합분석을 이용한 분류를 수행한 결과, 분류 정확도는 각각 86%와 90%로, 제안한 기법이 실험대상지역을 대표하는 침엽수와 활엽수의 endmember를 적절하게 추출한 것으로 나타났다. 분광혼합분석 기법을 이용한 보다 효과적인 분류를 위해서 분류항목 외 기타물질을 endmember로 고려하는 연구가 필요할 것으로 보인다.

KCI등재

6고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석

저자 : 이하성 ( Ha Seong Lee ) , 오관영 ( Kwan Young Oh ) , 정형섭 ( Hyung Sup Jung )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 227-239 (13 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

본 연구는 서로 다른 센서 특성을 지닌 KOMPSAT-2, QuickBird 및 WorldView-2 고해상도 위성영상에 영상융합기법을 적용하여 그 결과를 비교평가 하는 것이다. 사용된 기법은 대표적인 CS 기반 융합기법인 GIHS, GIHSA, GS1 및 Adaptive IHS를 사용하였다. 영상융합 기법의 품질평가는 시각적 분석과 정량적 분석을 수행하였으며, 정량적 분석에는 SAM, Spectral ERGAS 및 Q4을 사용하였다. KOMPSAT-2 영상은 GHISA 기법의 경우 상대적으로 우수한 성능을 나타내는 반면, QuickBird와 WorldView-2영상은 GS1기법의 경우에 우수한 성능을 나타낸다.

KCI등재

7다파장 라만 라이다 시스템을 이용한발원지 및 이동 경로에 따른 황사의 광학적 특성 변화 연구

저자 : 신동호 ( Dong Ho Shin ) , 이권호 ( Kwon Ho Lee ) , 김영준 ( Young J. Kim ) , 신성균 ( Sung Kyun Shin ) , 노영민 ( Young Min Noh ) , 김관철 ( Kwan Chul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 241-249 (9 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 광주과학기술원의 다파장 라만 라이다 시스템을 이용하여 2009년부터 2011년, 3년동안 광주에서 대기 에어로졸의 관측을 실시하였다. 관측된 라이다 신호의 분석으로부터 산출된 편광소멸도를 이용하여 황사의 층을 구분해 내었다. 구분 된 황사의 층의 고도에 따른 정보들은 Hybrid Single Particle Lagrangian Integrated Trajectory(HYSPLIT) 모델을 이용한 황사 층의 역궤적 분석에 이용되었고, 그 정보들을 통하여, 황사 층의 발원지 및 유입경로를 규명할 수 있었다. 한반도로 유입되는 황사는 고비사막을 기원으로 하는 경우가 가장 많은 것으로 나타났으며, 또한, 황사의 이동경로에 따른 광학적 특성 변화를 규명하기 위해, 중국 공업지역을 통과하여 유입된 황사 층과 발원지로부터 한반도로 직접적으로 유입된 황사의 구분하여 경로에 따른 입자 편광소멸도의 통계 분석을 실시하였다. 중국 공업지역을 통과하여 한반도로 유입된 황사의 편광소멸도는 0.07-0.1의 값을 보인 반면, 발원지로부터 공업지역을 경유하지 않고 직접 유입된 황사의 편광소멸도는 0.11-0.15로 상대적으로 높은 값을 보였다. 이는 발원지에서 발생한 순수 황사 입자가 이동 중에 공업지역에서 발생한 오염입자와 혼합하여 황사층의 편광소멸도를 감소시킨 것으로 사료된다.

KCI등재

8라이다 측정 거리 향상을 위한 통합 수신 시스템 개발(아날로그방식과 광자계수방식 신호 접합)

저자 : 신동호 ( Dong Ho Shin ) , 김영준 ( Young J. Kim ) , 신성균 ( Sung Kyun Shin ) , 노영민 ( Young Min Noh )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 251-258 (8 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 에어로졸의 광학적 특성 분석을 위한 라이다 시스템의 정확성 향상을 위해 새롭게 개발한 신호 수신 시스템을 설명하고자 한다. 광주과학기술원의 라이다에 아날로그 방식과 광자계수 방식을 통합한 시스템을 활용하여 에어로졸 후방산란 신호를 동시에 관측 가능한 수신단을 개발하였다. 관측된 두 신호 결합을 위해 접합 알고리즘을 고안하였고, 신호 결합에 앞서 광자계수 방식 신호의 Pile up효과를 보정하기 위해 부동시간(Dead time)을 계산하여 보정하였다. 관측 신호 분석을 통해 아날로그 방식 신호, 광자계수 방식 신호, 접합신호 그리고 부동시간 보정에 따른 차이점을 설명하고, 최종적으로 에어로졸 후방산란계수를 산출하여 상호 비교 및 정확성 향상을 확인하였다.

KCI등재

9천리안 위성영상에 감지된 사쿠라지마 화산분화와 지자기 변동 분석 연구 -2013년 8월 18일 분화를 중심으로-

저자 : 이윤경 ( Yoon Kyung Lee ) , 이창욱 ( Chang Wook Lee ) , 황의홍 ( Eui Hong Hwang ) , 김기연 ( Ki Yeon Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 259-274 (16 pages)

다운로드

(기관인증 필요)

초록보기

2013년 8월 18일 일본의 사쿠라지마 화산에서 비교적 큰 규모의 분화가 발생하였다. 이에 본 연구에서는 천리안 위성 자료를 이용하여 화산분화 다음날 주변 지역의 화산재를 감지하였으며, 기상청 청양 지자기 관측소 자료와 함께 일본 지자기 관측소 자료를 이용하여 지자기 변동에 대해 분석하였다. 먼저, 지자기 관측 자료를 이용하여 주성분 분석을 수행하고 관측 자료의 재구성 자료를 구축하였다. 재구성된 자료는 웨이블릿 기반 셈블런스 분석을 수행하였다. 다음으로는 지자기 관측 자료의 고유값 분석을 수행하고 Kp 지수와의 웨이블릿 기반 셈블런스 필터링을 통해서 태양의 영향을 최소화하였다. 분석결과에서는 전체적으로 화산 발생 시점에서 이벤트가 발생하는 것을 확인 할 수 있었다. 다만, 일부 지자기 관측소의 경우 화산이 아닌 다른 영향을 받았을 가능성을 배제 할 수 없다. 이 연구에서는 국내 연구로는 드물게 화산 분화에 의한 지자기 영향을 분석하였으며 향후 지진·화산 연구에 도움이 될 수 있을 것으로 기대한다.

KCI등재

10정지궤도 천리안위성 해양관측센서GOCI의 Tasseled Cap 변환계수 산출연구

저자 : 원중선 ( Joong Sun Won ) , 박욱 ( Wook Park ) , 신지선 ( Ji Sun Shin )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 30권 2호 발행 연도 : 2014 페이지 : pp. 275-292 (18 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 Geostationary Ocean Color Imager(GOCI) 센서에 적용할 수 있는 고유의 Tasseled Cap Transformation(TCT) 계수를 제시하고 있다. TCT는 다중밴드 센서 자료로부터 지표의 특성을 분석하는 전통적인 영상변환 방법 중 하나로 새로운 다중밴드 광학센서가 관측을 시작하는 경우 센서의 특성 차이로 인하여 각각의 육상관측 위성센서에 적합한 TCT 계수들이 장기 분석을 통하여 수립되어야 한다. GOCI 센서는 해양관측이 주 목적으로 개발되었으나 영상의 상당 부분은 육지를 관측하고 있으며 밴드 구성은 육지관측에도 일반적으로 이용되는 Visible-Near InfraRed(VNIR) 영역의 정보를 포함하고 있다. 또한 GOCI 센서의 높은 시간 해상도는 지표의 일별 변화의 관측에도 유용하게 사용될 수 있다. 이러한 장점을 이용하여 GOCI 센서에 대한 고유한 TCT가 제공된다면 GOCI 센서의 관측범위 내에서 준 실시간으로 지표변화에 대한 분석과 해석이 가능할 것이다. TCT는 일반적으로 ”Brightness”, ”Greenness”, “Wetness”의 세 가지 정보를 포함하지만, ShortWave InfraRed(SWIR) 파장대역이 없는 GOCI 센서의 경우에는 ”Wetness”의 정보를 얻을 수 없다. GOCI 센서의 높은 시간 해상도의 활용을 극대화하기 위해서는 “Wetness”의 정보가 제공되어야 한다. “Wetness”의 정보를 얻기 위해 GOCI 주성분 분석(Principal Component Analysis: PCA) 공간을 MODIS TCT 공간에 선형 회귀하는 방법이 사용되었다. 이 연구에서 산출된 GOCI TCT 계수는 정지궤도의 특성에 의해 관측 시간대별로 다른 변환계수를 가질 수 있다. 이 차이를 알아보기 위하여 GOCI TCT 자료와 MODIS TCT 자료 사이의 상관관계가 비교되었다. 그 결과, “Brightness”와 “Greenness”는 4시 자료, “Wetness”는 2시 자료의 변환계수가 선택되었다. 최종적으로 산출된 변환계수의 적절성을 평가하기 위하여 GOCI TCT 자료는 MODIS TCT 영상 및 여러 육상 파라미터들과 비교되었다. GOCI TCT 영상은 MODIS TCT 영상보다 지표 피복의 분류가 더 세밀하게 표현되었으며, GOCI TCT 공간의 지표 피복 분포도 유의미한 결과를 보여줬다. 또한 GOCI TCT의 “Brightness”, “Greenness”, “Wetness” 자료는 Albedo(R2 = 0.75), Normalized Difference Vegetation Index(NDVI) (R2 = 0.97), Normalized Difference Moisture Index(NDMI) (R2 = 0.77)와 각각 비교적 높은 상관관계가 나타났다. 이러한 결과들은 적절한 TCT 계수의 산출이 이루어졌다는 것을 보여준다.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기