논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> GPS를 이용한 미국 알래스카 어거스틴 화산의 지표변위 감시 -2006년 분화를 중심으로-

KCI등재

GPS를 이용한 미국 알래스카 어거스틴 화산의 지표변위 감시 -2006년 분화를 중심으로-

Surface deformation monitoring of Augustine volcano, Alaska using GPS measurement -A case study of the 2006 eruption-

김수경 ( Su Kyung Kim ) , 황의홍 ( Eui Hong Hwang ) , 김영화 ( Young Hwa Kim ) , 이창욱 ( Chang Wook Lee )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 29권5호
  • : 연속간행물
  • : 2013년 10월
  • : 545-554(10pages)
대한원격탐사학회지

DOI


목차


					

키워드 보기


초록 보기

미국 알래스카의 알류산열도에 위치하는 어거스틴 화산은 인근 지역에 위치하는 많은 화산들 중 가장 움직임이 활발한 화산중 하나로, 가장 최근에 발생한 2006년 분화 당시 1월 11일부터 28일까지 총 14번의 분출을 하였으며, 최종적으로 화산폭발지수 3으로 기록되었다. 본 연구에서는 어거스틴에 설치되어 상시운영 중인 12개 GPS 관측소의 2005년부터 2011년까지 관측데이터를 이용하여 2006년 분화 전·후 지표변위 양상을 확인하고 다각도의 분석을 시도하였다. 모든 자료처리는 Bernese GPS Software V5.0를 이용하여 진행하였으며, 어거스틴 화산 인근(약 24.5 km)에 위치한 AC59 관측소를 기지점으로 하는 정밀 기선해석이 수행되었다. 그 결과 분화가 발생하기 약 4개월 전부터 분화구 주변에서 평균 9.7 cm/yr 속도로 지표가 부풀어 오르는 양상이 뚜렷하게 나타났으며, 분화 발생 이후 -9.2 cm/yr의 급격한 침하현상이 확인되었다. 화산활동이 안정기에 접어든 이후에는 화산의 북쪽 사면에 설치된 일부 관측소에서 분화 당시 흘러내린 화산쇄설물의 다짐작용에 의한 침하 현상이 확인되었다. 이러한 결과는 GPS를 이용하여 관측한 지표의 변화가 화산활동을 감시하고 예측하는데 유용한 자료로 사용될 수 있음을 시사한다.
Augustine is an active stratovolcano located in southwest of Cook Inlet, about 290 kilometers southwest of Anchorage, Alaska. Between January 11 and 28, 2006, the volcano erupted explosively 14 times. We collected twelve permanent GPS stations operating by Plate Boundary Observatory (PBO) from 2005 to 2011. All data processing was carried out using Bernese GPS Software V5.0 with IGS precise orbit. Static baseline processing by fixing AC59 station was applied for the volcano activity monitoring. AC59 is the nearest (about 24.5 km) station to Augustine volcano, and located on North America Plate including Augustine Island. The test results show inflation (9.7 cm/yr) and deflation (-9.2 cm/yr) of volcano before and after eruption around crater clearly. After volcano activity has reached a plateau, some of the GPS stations installed north of the volcano show ground subsidence phenomenon caused by compaction of pyroclastic flows. These results indicate the possibility of using surface deformation observed by GPS for monitoring and prediction of volcano activity.

UCI(KEPA)

I410-ECN-0102-2014-500-001869921

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1891


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권6호(2022년 12월) 수록논문
최근 권호 논문
| | | |

KCI등재

1핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지

저자 : 송아람 ( Ahram Song ) , 이창희 ( Changhui Lee ) , 이진민 ( Jinmin Lee ) , 한유경 ( Youkyung Han )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 991-1005 (15 pages)

다운로드

(기관인증 필요)

초록보기

위성 영상은 핵 활동 탐지와 검증을 위한 효율적인 보조자료로 핵시설과 같이 접근이 어렵고 정보가 제한된 지역에 매우 유용하다. 특히 장비의 이동 또는 시설물의 변화와 같이 핵실험을 준비하는 과정은 시계열 분석을 통해 충분히 식별 가능하다. 본 연구에서는 핵 활동과 관련된 주요 객체의 변화를 탐지하기 위하여, 다시기 영상의 의미론적 분할 결과의 차이를 이용하였다. AIHub에서 제공하는 KOMPSAT 3/3A 영상으로 구성된 객체 판독 데이터셋에서 건물, 도로, 소형 객체의 정보를 추출하여 학습하였으며, U-Net, PSPNet, Attention U-Net에 대하여 주요 파라미터를 변경하며 대상 객체 추출에 적합한 의미론적 분할 모델을 분석하였다. 의미론적 분할 결과의 차영상으로 생성된 결과에 객체 정보를 포함하여 최종 변화 탐지를 수행하였으며, 제안 기법을 임의의 변화를 포함한 시뮬레이션 영상에 적용한 결과, 변화 객체를 효과적으로 추출할 수 있었다. 본 연구에서 제시된 변화 탐지 기법을 적용하기 위해서는, 의미론적 분할의 정확도가 우선적으로 확보되어야 하는 제약이 있으나, 추후 실험 대상 지역에 대한 학습데이터셋이 증가할 수록 적용 가능한 분석 범위가 증가할 것으로 기대된다.


Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

KCI등재

2훈련자료 내 재배지역의 비율에 따른 딥러닝 모델의 성능 평가

저자 : 성선경 ( Seonkyeong Seong ) , 최재완 ( Jaewan Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1007-1014 (8 pages)

다운로드

(기관인증 필요)

초록보기

차세대중형위성(Compact Advanced Satellite 500, CAS500)은 식생, 산림, 농업 등의 분야를 포함한 다양한 목적을 위하여 사용될 수 있으며, 다양한 영역에 대한 빠른 위성영상의 취득이 가능할 것으로 기대되고 있다. 차세대중형위성을 통하여 취득된 위성영상을 농업분야에서 활용하기 위해서는 위성영상 기반 작물재배지역추출 기법에 대한 개발이 필요하다. 특히, 최근 들어 딥러닝 분야에 대한 연구가 활발해짐에 따라서, 작물재배지역 추출을 위한 딥러닝 모델의 개발 및 훈련자료 생성에 관한 연구가 필요한 실정이다. 본 연구에서는 PlanetScope 위성영상과 팜맵을 이용하여 합천군 지역의 양파 및 마늘 재배지역을 분류하고자 하였다. 특히, 효과적인 모델의 학습을 위하여 작물재배지역의 비율에 따른 모델 성능을 분석하고자 하였다. 실험에 사용한 딥러닝 모델은 Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet)을 작물재배지역 분류의 목적에 맞도록 재구성하여 활용하였다. 실험결과, 훈련자료 내 작물재배지역의 비율이 딥러닝 모델의 성능에 영향을 미치는 것을 확인하였다.


Compact Advanced Satellite 500 (CAS500) can be used for various purposes, including vegetation, forestry, and agriculture fields. It is expected that it will be possible to acquire satellite images of various areas quickly. In order to use satellite images acquired through CAS500 in the agricultural field, it is necessary to develop a satellite image-based extraction technique for crop-cultivated areas. In particular, as research in the field of deep learning has become active in recent years, research on developing a deep learning model for extracting crop cultivation areas and generating training data is necessary. This manuscript classified the onion and garlic cultivation areas in Hapcheon-gun using PlanetScope satellite images and farm maps. In particular, for effective model learning, the model performance was analyzed according to the proportion of crop-cultivated areas. For the deep learning model used in the experiment, Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet) was reconstructed to fit the purpose of crop cultivation area classification and utilized. As a result of the experiment, the ratio of crop cultivation areas in the training data affected the performance of the deep learning model.

KCI등재

3화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법

저자 : 김재인 ( Jae-in Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1015-1023 (9 pages)

다운로드

(기관인증 필요)

초록보기

착륙선의 진입-하강-착륙 과정에는 많은 환경적 및 기술적 어려움이 수반된다. 이러한 문제들을 해결하기 위한 방안으로, 최근 착륙선에는 지형상대항법 기술이 필수적으로 고려되고 있다. 지형상대항법은 하강하는 착륙선에서 수집되는 Inertial Measurement Unit (IMU) 데이터 및 영상 데이터를 기 구축된 참조 데이터와 비교하여 착륙선의 위치 및 자세를 추정하는 기술이다. 본 논문에서는 화성에서 활용할 지형상대항법 기술을 개발하기 위해 그 핵심 기술 요소로서 하강 데이터셋 생성 및 랜드마크 추출 방법을 제시한다. 제안방법은 화성착륙 시뮬레이션 궤적정보를 이용하여 하강하는 착륙선의 IMU 데이터를 생성하며, 이에 맞추어 고해상도 정사영상지도 및 수치표고모델로부터 ray tracing 기법을 통해 하강영상을 생성한다. 랜드마크 추출은 텍스쳐 정보가 부족한 화성 표면의 특성을 고려하여 영역 기반 추출 방식으로 이루어지며, 정합 정확도와 속도 향상을 위해 탐색영역 축소가 수행된다. 하강영상 생성 방법의 성능분석 결과는 제안방법으로 촬영 기하학적 조건을 만족시키는 영상 생성이 가능함을 보여주었으며, 랜드마크 추출 방법의 성능분석 결과는 제안방법을 통해 수 미터 수준의 위치 추정 정확도를 담보하면서 동시에 특징점 기반 방식만큼의 처리속도 확보가 가능함을 보여주었다.


The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

KCI등재

4무인항공기 영상을 위한 영상 매칭 기반 생성포인트 클라우드의 후처리 방안 연구

저자 : 이수암 ( Sooahm Rhee ) , 김한결 ( Han-gyeol Kim ) , 김태정 ( Taejung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1025-1034 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 건물의 포인트 클라우드를 추출할 때 발생하는 홀 영역의 보간을 통한 후처리 방안을 제안한다. 스테레오 영상 데이터에서 영상 매칭을 수행할 경우 차폐 및 건물 벽면 등의 영향으로 홀이 발생한다. 이런 영역은 추후 포인트 클라우드를 기반으로 하는 부가 산출물의 생성에 장애 요인이 될 수 있으므로, 이에 대한 효과적인 처리 기법의 적용이 필요하다. 먼저 영상 매칭을 적용하여 생성된 시차맵을 기반으로 초기 포인트 클라우드를 추출한다. 포인트 클라우드를 격자화 시키면 차폐영역 및 건물 벽면의 영향으로 발생하는 홀 영역을 확인할 수 있다. 홀 영역에 삼각망을 생성하고 삼각망 내부 값을 영역의 최소값으로 처리하는 과정을 반복하는 것으로 건물 주변의 지표면과 건물 간에 어색함 없는 보간의 수행이 가능하다. 격자화 된 데이터에서 보간 된 영역에 해당하는 위치정보를 포인트로 추가하여 새로운 포인트 클라우드를 생성한다. 보간과정 중 불필요한 점의 추가를 최소화하기 위해 초기 포인트 클라우드 영역에서 벗어나는 영역으로 보간 된 데이터는 처리하지 않았으며, 보간 된 포인트 클라우드에 적용되는 RGB 밝기값은 매칭에 사용된 스테레오 영상 중 촬영중심과 해당 픽셀이 가장 근접한 영상으로 설정하여 처리하였다. 실험 결과 제안 기법을 통해 대상영역의 포인트 클라우드 생성 후 발생하는 음영 영역이 효과적으로 처리되는 것을 확인할 수 있었다.


In this paper, we propose a post-processing method through interpolation of hole regions that occur when extracting point clouds. When image matching is performed on stereo image data, holes occur due to occlusion and building façade area. This area may become an obstacle to the creation of additional products based on the point cloud in the future, so an effective processing technique is required. First, an initial point cloud is extracted based on the disparity map generated by applying stereo image matching. We transform the point cloud into a grid. Then a hole area is extracted due to occlusion and building façade area. By repeating the process of creating Triangulated Irregular Network (TIN) triangle in the hall area and processing the inner value of the triangle as the minimum height value of the area, it is possible to perform interpolation without awkwardness between the building and the ground surface around the building. A new point cloud is created by adding the location information corresponding to the interpolated area from the grid data as a point. To minimize the addition of unnecessary points during the interpolation process, the interpolated data to an area outside the initial point cloud area was not processed. The RGB brightness value applied to the interpolated point cloud was processed by setting the image with the closest pixel distance to the shooting center among the stereo images used for matching. It was confirmed that the shielded area generated after generating the point cloud of the target area was effectively processed through the proposed technique.

KCI등재

5MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구

저자 : 김예슬 ( Yeseul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1035-1046 (12 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 토지 피복 분류를 위한 다중 해상도 자료 융합의 적용성을 평가하였다. 여기서 다중 해상도 자료 융합 모델로는 spatial time-series geostatistical deconvolution/fusion model (STGDFM)을 적용하였다. 연구 지역은 미국 Iowa 주의 일부 농경 지역으로 선정하였으며, 대상 지역의 규모를 고려해 다중 해상도 자료 융합의 입력 자료로 Moderate Resolution Imaging Spectroradiometer (MODIS) 및 Landsat 영상을 사용하였다. 이를 바탕으로 STGDFM 적용해 Landsat 영상이 결측된 시기에서 가상의 Landsat 영상을 생성하였다. 그리고 획득한 Landsat 영상과 함께 STGDFM의 융합 결과를 입력 자료로 사용해 토지 피복 분류를 수행하였다. 특히 다중 해상도 자료 융합의 적용성 평가를 위해 획득한 Landsat 영상만을 이용한 분류 결과와 Landsat 영상 및 융합 결과를 모두 이용한 분류 결과를 비교 평가하였다. 그 결과, Landsat 영상만을 이용한 분류 결과에서는 대상 지역의 주요 토지 피복인 옥수수와 콩 재배지에서 혼재 양상이 두드러지게 나타났다. 또한 건초 및 곡물 지역과 초지 지역 등 식생 피복 간의 혼재 양상도 큰 것으로 나타났다. 반면 Landsat 영상 및 융합 결과를 이용한 분류 결과에서는 옥수수와 콩 재배지의 혼재 양상과 식생 피복 간의 혼재 양상이 크게 완화되었다. 이러한 영향으로 Landsat 영상 및 융합 결과를 이용한 분류 결과에서 분류 정확도가 약 20%p 향상되었다. 이는 STGDFM을 통해 MODIS 영상이 갖는 시계열 분광 정보를 융합 결과에 반영하면서 Landsat 영상의 결측을 보완할 수 있었고, 이러한 시계열 분광 정보가 분류 과정에 결합되면서 오분류를 크게 줄일 수 있었던 것으로 판단된다. 본 연구 결과를 통해 토지 피복 분류에 다중 해상도 자료 융합이 효과적으로 적용될 수 있음을 확인하였다.


This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

KCI등재

6Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가

저자 : 지준화 ( Junhwa Chi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1047-1056 (10 pages)

다운로드

(기관인증 필요)

초록보기

지구 온난화의 중요한 지시자인 북극의 바다 얼음인 해빙은 기후 시스템, 선박의 항로 안내, 어업 활동 등에서의 중요성으로 인해 다양한 학문 분야에서 관심을 받고 있다. 최근 자동화와 효율적인 미래 예측에 대한 요구가 커지면서 인공지능을 이용한 새로운 해빙 예측 모델들이 전통적인 수치 및 통계 예측 모델을 대체하기 위해 개발되고 있다. 본 연구에서는 북극 해빙의 전역적, 지역적 특징을 학습할 수 있는 two-stream convolutional long- and short-term memory (TS-ConvLSTM) 인공지능 모델의 북극 해빙 면적이 최저를 보이는 9월에 대해 2001년부터 2021년까지 장기적인 성능 검증을 통해 향후 운용 가능한 시스템으로써의 가능성을 살펴보고자 한다. 장기 자료를 통한 검증 결과 TS-ConvLSTM 모델이 훈련자료의 양이 증가하면서 향상된 예측 성능을 보여주고 있지만, 최근 지구 온난화로 인한 단년생 해빙의 감소로 인해 해빙 농도 5-50% 구간에서는 예측력이 저하되고 있음을 보여주었다. 반면 TS-ConvLSTM에 의해 예측된 해빙 면적과 달리 Sea Ice Prediction Network에 제출된 Sea Ice Outlook (SIO)들의 해빙 면적 중간값의 경우 훈련자료가 늘어나더라도 눈에 띄는 향상을 보이지 않았다. 본 연구를 통해 TS-ConvLSTM 모델의 향후 북극 해빙 예측 시스템의 운용 가능 잠재성을 확인하였으나, 향후 연구에서는 예측이 어려운 자연 환경에서 더욱 안정성 있는 예측 시스템 개발을 위해 더 많은 시공간 변화 패턴을 학습할 수 있는 방안을 고려해야 할 것이다.


Sea ice, frozen sea water, in the Artic is a primary indicator of global warming. Due to its importance to the climate system, shipping-route navigation, and fisheries, Arctic sea ice prediction has gained increased attention in various disciplines. Recent advances in artificial intelligence (AI), motivated by a desire to develop more autonomous and efficient future predictions, have led to the development of new sea ice prediction models as alternatives to conventional numerical and statistical prediction models. This study aims to evaluate the performance of the two-stream convolutional longand short-term memory (TS-ConvLSTM) AI model, which is designed for learning both global and local characteristics of the Arctic sea ice changes, for the minimum September Arctic sea ice from 2001 to 2021, and to show the possibility for an operational prediction system. Although the TSConvLSTM model generally increased the prediction performance as training data increased, predictability for the marginal ice zone, 5-50% concentration, showed a negative trend due to increasing first-year sea ice and warming. Additionally, a comparison of sea ice extent predicted by the TS-ConvLSTM with the median Sea Ice Outlooks (SIOs) submitted to the Sea Ice Prediction Network has been carried out. Unlike the TS-ConvLSTM, the median SIOs did not show notable improvements as time passed (i.e., the amount of training data increased). Although the TSConvLSTM model has shown the potential for the operational sea ice prediction system, learning more spatio-temporal patterns in the difficult-to-predict natural environment for the robust prediction system should be considered in future work.

KCI등재

7가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구

저자 : 이유진 ( Yoo Jin Lee ) , 이수암 ( Sooahm Rhee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1057-1068 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 논문은 모바일 기반의 실시간 영상 측위 기술 개발을 목표로 사용자가 촬영한 사진과 가상의 텍스쳐 영상 간의 매칭 가능성 확인 연구로 특징점 기반의 매칭 알고리즘의 조합 성능을 비교했다. 특징점 기반의 매칭 알고리즘은 특징점(feature)을 추출하는 과정과 추출된 특징점을 설명하는 서술자(descriptor)를 계산하는 과정, 최종적으로 서로 다른 영상에서 추출된 서술자를 매칭하고, 잘못 매칭된 특징점을 제거하는 과정으로 이루어진다. 이때 매칭 알고리즘 조합을 위해, 특징점을 추출하는 과정과 서술자를 계산하는 과정을 각각 같거나 다르게 조합하여 매칭 성능을 비교하였다. 가상 실내 텍스쳐 영상을 위해 V-World 3D 데스크탑을 활용하였다. 현재 V-World 3D 데스크톱에서는 수직 · 수평적 돌출부 및 함몰부와 같은 디테일이 보강되었다. 또한, 실제 영상 텍스쳐가 입혀진 레벨로 구축되어 있어, 이를 활용하여 가상 실내 텍스쳐 데이터를 기준영상으로 구성하고, 동일한 위치에서 직접 촬영하여 실험 데이터셋을 구성하였다. 데이터셋 구축 후, 매칭 알고리즘들로 매칭 성공률과 처리 시간을 측정하였고, 이를 바탕으로 매칭 성능 향상을 위해 매칭 알고리즘 조합을 결정하였다. 본 연구에서는 매칭 기법마다 가진 특장점을 기반으로 매칭 알고리즘을 조합하여 구축한 데이터셋에 적용해 적용가능성을 확인하였고, 추가적으로 회전요소가 고려되었을 때의 성능 비교도 함께 수행하였다. 연구 결과, Scale Invariant Feature Transform (SIFT)의 feature와 descriptor 조합이 가장 매칭 성공률이 좋았지만 처리 소요 시간이 가장 큰 것을 확인할 수 있었고, Features from Accelerated Segment Test (FAST)의 feature와 Oriented FAST and Rotated BRIEF (ORB)의 descriptor 조합의 경우, SIFT-SIFT 조합과 유사한 매칭 성공률을 가지면서 처리 소요시간도 우수하였다. 나아가, FAST-ORB의 경우, 10°의 회전이 데이터셋에 적용되었을 때에도 매칭 성능이 우세함을 확인하였다. 따라서 종합적으로 가상 텍스쳐 영상과 실영상간 매칭을 위해서 FAST-ORB 조합의 매칭 알고리즘이 적합한 것을 확인할 수 있었다.


This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

KCI등재

8정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구

저자 : 신대근 ( Daegeun Shin ) , 김소명 ( Somyoung Kim ) , 박주선 ( Juseon Bak ) , 백강현 ( Kanghyun Baek ) , 홍성재 ( Sungjae Hong ) , 김재환 ( Jaehwan Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1069-1080 (12 pages)

다운로드

(기관인증 필요)

초록보기

대류권 오존은 전 세계적으로 인간과 생태계에 막대한 피해를 입히는 오염 물질이다. 국지적인 오존 문제는 발생 지역에서 바람에 의해 풍하 측으로 이동함에 따라 지역적, 전 지구적 문제가 되고 있다. 보다 효율적인 오존 모니터링을 위해서 연속적인 일중 관측이 가능한 정지궤도 위성을 이용하려는 시도가 있어왔다. 이 연구에서는 정지궤도 위성에서 관측될 대류권 오존의 연속적인 관측을 이용하여 대류권 오존 이동벡터(Tropospheric Ozone Movement Vector, TOMV) 산출을 세계 최초로 시도했다. 현재 정지궤도 위성을 이용한 대류권오존 산출물이 존재하지 않기 때문에 대기화학모델인 GEOS-Chem에서 산출된 대류권 오존 자료를 이용하였다. 산출된 오존의 이동 속도는 화학모델에 비해 높은 값이 나왔지만 오염의 이동의 방향은 매우 높은 일치성을 보여주었다. 제시된 알고리즘을 이용하면 오존의 유입 플럭스를 오존의 움직이는 속도와 방향을 이용하여 산출할 수도 있다. 이와 같은 결과는 오염물질의 이동분석에 널리 사용되는 역방향 궤적 방법의 대안으로써 오염물질의 모니터링과 예보에 보다 유용하게 사용될 수 있다. 이와 반대로 오존분포의 경계선이 불분명하면 TOMV 산출에 오차를 발생시킬 수 있기 때문에 이동에 대한 잘못된 정보를 줄 수 있는 것이 이 방법의 한계이다. 그럼에도 불구하고 TOMV 방법은 앞으로 활동하게 될 정지궤도 위성을 이용한 오염 모니터링과 예보에 진일보한 방향을 제시해줄 수 있을 것이다.


The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

KCI등재

9GACOS 모델 대기 위상 지연 보정을 활용한 SBAS-InSAR 기술 기반 울산광역시 지반 침하 탐지

저자 : 수레시크리쉬난 ( Suresh Krishnan Palanisamy Vadivel ) , 김덕진 ( Duk-jin Kim ) , 이정훈 ( Jung-hoon Lee ) , 송주영 ( Juyoung Song ) , 김준우 ( Junwoo Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1081-1089 (9 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 시계열 Small Baseline Subset (SBAS)-InSAR 기법을 이용하여 울산시의 지반 침하를 조사하였으며, 79개의 Sentinel-1 SAR 영상과 385개의 간섭도 영상(interferogram)을 사용하여 2015년 5월부터 2021년 12월 울산광역시의 지상 변위(surface displacement)를 추정하였다. 지반 침하율은 북구와 남구 삼산동 2지역에서 연 3.44 cm, 1.68 cm로 계측되었다. 또한 Generic Atmospheric Correction Online Service (GACOS)로 생성한 Zenith Total Delay (ZTD) 지도를 활용하여 unwrapping된 간섭도 위상에서 대기 지연(tropospheric delay)의 영향을 제거할 수 있는 가능성을 평가하였으며, GACOS ZTD 보정 전후의 SBAS-InSAR 지상 변위 측정의 차이가 연 1 mm미만임을 발견하였다.


This study aims to investigate and monitor the ground subsidence in Ulsan city, South Korea using time-series Small Baseline Subset (SBAS)-InSAR analysis. We used 79 Sentinel-1 SAR scenes and 385 interferograms to estimate the ground displacements at Ulsan city from May 2015 and December 2021. Two subsiding regions Buk-gu and Nam-gu Samsan-dong were found with the subsidence rate of 3.44 cm/year and 1.68 cm/year. In addition, we evaluated the possibility of removing the effect of atmospheric (tropospheric delay) phase in unwrapped phase using the Zenith Total Delay (ZTD) maps from Generic Atmospheric Correction Online Service (GACOS). We found that the difference between the SBAS-InSAR ground displacements before and after GACOS ZTD correction is less than 1 mm/year in this study.

KCI등재

10개선된 DeepResUNet과 컨볼루션 블록 어텐션 모듈의 결합을 이용한 의미론적 건물 분할

저자 : 예철수 ( Chul-soo Ye ) , 안영만 ( Young-man Ahn ) , 백태웅 ( Tae-woong Baek ) , 김경태 ( Kyung-tae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1091-1100 (10 pages)

다운로드

(기관인증 필요)

초록보기

딥러닝 기술의 진보와 함께 다양한 국내외 고해상도 원격탐사 영상의 활용이 가능함에 따라 딥러닝 기술과 원격탐사 빅데이터를 활용하여 도심 지역 건물 검출과 변화탐지에 활용하고자 하는 관심이 크게 증가하고 있다. 본 논문에서는 고해상도 원격탐사 영상의 의미론적 건물 분할을 위해서 건물 분할에 우수한 성능을 보이는DeepResUNet 모델을 기본 구조로 하고 잔차 학습 단위를 개선하고 Convolutional Block Attention Module(CBAM)을 결합한 새로운 건물 분할 모델인 CBAM-DRUNet을 제안한다. 제안한 건물 분할 모델은 WHU 데이터셋과 INRIA 데이터셋을 이용한 성능 평가에서 UNet을 비롯하여 ResUNet, DeepResUNet 대비 F1 score, 정확도, 재현율 측면에서 모두 우수한 성능을 보였다.


As deep learning technology advances and various high-resolution remote sensing images are available, interest in using deep learning technology and remote sensing big data to detect buildings and change in urban areas is increasing significantly. In this paper, for semantic building segmentation of high-resolution remote sensing images, we propose a new building segmentation model, Convolutional Block Attention Module (CBAM)-DRUNet that uses the DeepResUNet model, which has excellent performance in building segmentation, as the basic structure, improves the residual learning unit and combines a CBAM with the basic structure. In the performance evaluation using WHU dataset and INRIA dataset, the proposed building segmentation model showed excellent performance in terms of F1 score, accuracy and recall compared to ResUNet and DeepResUNet including UNet.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석

저자 : 조민지 ( Min Ji Cho ) , 종루 ( Zhong Lu ) , 이창욱 ( Chang Wook Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 443-459 (17 pages)

다운로드

(기관인증 필요)

초록보기

자바 섭입대 위에 존재하는 인도네시아 메라피 화산은 1~5년의 주기를 가지는 화산활동이 활발한 성층화산이다. 대체적으로 화산폭발지수가 1-3정도의 규모로 나타나는데 비해 최근 2010년 분화는 화산폭발지수가 4까지 올라가 386명을 사망자를 유발했다. 본 연구에서는 40년간 지구를 관측해온 Landsat 영상을 이용하여 18년 동안 메라피 화산의 지표변화를 관측하였다. 연구를 위해 1994년 7월 6일부터 2012년 9월 1일까지 총 55장의 Landsat-5,7 영상을 수집하였으며, 밴드조합영상을 통해 화산쇄설류의 흐름이 시간에 따라 이동함을 확인하였다. 화산쇄설류가 덮고 있는 지역을 추출하기 위해서, COST model을 이용한 대기보정 후 감독분류를 수행하였으며, 그 결과 CVP 보고서에 기재된 화산쇄설류의 분화 방향과 추출된 화산쇄설류 영역의 변화가 거의 일치했다. NASA에서 제공하는 Landsat-5,7 위성의 열적외선 밴드를 이용한 온도 추출 기법을 적용하여 분화구 지역의 평균 지표온도를 산출한 결과, 분화 전 지표 온도가 급격히 상승하고, 분화 후 온도가 하강하는 양상을 반복적으로 나타냈다. 비록 기상조건에 따른 영상획득에 제약이 있지만, 장기간 발생된 메라피 화산의 지표변화를 확인하는데 있어서 Landsat 위성 영상이 매우 유용한 도구임을 확인했다.

KCI등재

2논벼 NPP 지수를 이용한 우리나라 벼 수량 추정 -MODIS 영상과 CASA 모형의 적용-

저자 : 나상일 ( Sang Il Na ) , 홍석영 ( Suk Young Hong ) , 김이현 ( Yi Hyun Kim ) , 이경도 ( Kyoung Do Lee ) , 장소영 ( So Young Jang )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 461-476 (16 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

CASA 모델은 작물의 순 일차생산량(NPP)을 추정하는 가장 빠르고 정확한 모델 중 하나이다. 본 연구의 목적은 (1) 2002년 ~ 2012년 동안 한국의 논지역을 대상으로 작물 NPP의 시공간적 변화 패턴을 분석하고, (2) 연간 NPP와 쌀 생산성 간의 관계를 파악하여, (3) MODIS Product와 태양 복사량을 CASA 모형에 적용하여 2012년 한국의 쌀 수량을 추정하는 것이다. 또한, (4) 통계청이 발표한 최종 수량과 비교를 통해적용을 검토하였다. 이를 위해, 월별 또는 누적 NPP와 수량과의 상관분석을 실시하였다. 그 결과, 총 누적 NPP와 9월의 NPP가 쌀 수량과 높은 상관성을 나타내었으며, 이를 이용하여 추정한 2012년 예측 수량은 누적 NPP 적용시 526.93 kg/10a, 9월의 NPP 적용시 520.32 kg/10a로 추정되었다. 통계청의 최종 수량과의 RMSE는 각각 9.46 kg/10a, 12.93 kg/10a를 나타내었으나, 전반적으로 두 모형 모두 1:1선에 근접한 결과를 보이고 있어 NPP를 이용한 벼 수량 추정 모형이 논벼 수량의 변화특성을 잘 반영하고 있는 것으로 판단된다.

KCI등재

3항공사진을 이용한 방포항 인근 해빈의 장기간 해안선 변화 분석

저자 : 김백운 ( Baeck Oon Kim ) , 윤공현 ( Kong Hyun Yun ) , 이창경 ( Chang Kyung Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 477-486 (10 pages)

다운로드

(기관인증 필요)

초록보기

장기간 해안선 변화 자료의 구축을 통해 해안선의 시·공간적인 변화 양상을 분석하고, 이에 근거하여 해안침식의 향후 경향을 파악하는 일은 연안관리에 매우 중요한 역할을 한다. 본 연구에서는 수치항공사진을 이용하여 방포항 인근 해안지역의 장기간(1985년 ~ 2009년) 해안선 변화 탐지를 위해 항공삼각측량, 지상기준점측량, 수치도화, 그리고 해안선 변화율을 산정하였다. 그 결과 방포해빈과 꽃지해빈의 해안선은 각각 0.2 m/yr와 최대 0.8 m/yr로 침식된 것으로 파악되었다. 또한 등고선 변화 통하여 꽃지 해빈의 북부지역에서 침식현상이 가장 뚜렷하게 나타났으며 표고 1 m 간격의 등고선은 최대 45 m 후퇴하였음을 알수 있었다. 이러한 변화는 다양하고 복합적인 요인에 의해 발생할 수 있으며 주된 요인은 1990년대 말에 설치된 해변 옹벽이 해안침식을 일으키는 주요 원인으로서 추정되고 있다.

KCI등재

4스테레오 영상분석에 기반한 DSM 과대오차영역의 자동검출기법연구

저자 : 정재훈 ( Jae Hoon Jeong ) , 김태정 ( Tae Jung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 487-497 (11 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 고해상도 스테레오 영상분석에 기반하여 DSM에 존재하는 오차들을 효율적으로 검출하는 기법을 제시한다. 스테레오 영상정합을 통한 DSM 자동생성은 여러 가지 측면에서 DSM 확보를 위한 유용한 방법이 될 수 있는데, 자동생성 과정에서 발생하는 과대오차들을 포함하고 있어 이를 개선하기 위한 효율적 검출 방법이 필요하다. 본 연구에서는 고해상도 스테레오 영상을 활용한 상관계수 분석 기법을 적용하여 DSM의 모든 격자의 신뢰도를 나타낸다. 제안 기법을 적용하면, DSM 정확도에 치명적인 영향을 주어 우선적으로 보정이 요구되는 과대오차 지역을 자동으로 검출할 수 있다. 해당 지역의 참값 DSM을 활용하여 제안기법의 신뢰성을 확인하였으며 실험결과로부터 제안기법이 효율적인 DSM 보정을 위한 유용한 DSM 오차분석 기법이 될 수 있음을 확인하였다. 제안된 기법은 다양한 DSM 및 DEM 자료의 오차분석에 활용이 가능하며 따라서, 신뢰성 있는 DSM 및 DEM 확보에 유용하게 활용될 수 있을 것으로 기대한다.

KCI등재

5고해상도 전정색 영상과 다중분광 영상을 활용한 그림자 분석기반의 3차원 건물 정보 추출

저자 : 이태윤 ( Tae Yoon Lee ) , 김윤수 ( Youn Soo Kim ) , 김태정 ( Tae Jung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 499-508 (10 pages)

다운로드

(기관인증 필요)

초록보기

각종 센서 정보에 기반한 3차원 건물 정보 추출 방법은 건물 형태를 보다 상세하게 묘사할 수 있지만 많은 비용 및 복잡한 처리가 요구된다. 단일 고해상도 영상에 기반한 방법은 추출할 수 있는 3차원 건물정보가 비교적 제한적이지만 낮은 비용과 단순한 처리 과정으로 건물 정보를 추출할 수 있다는 장점을 갖는다. 단일 고해상도 위성영상만을 이용한 건물 정보 추출 방법 중에서도 Volumetric Shadow Analysis(VSA)는 그림자나 건물 밑 바닥이 일부분 가려져도 해당 건물의 높이와 바닥 위치 정보를 추출할 수 있다. 최근에는 반자동 VSA가 제안되었으나 이 방법은 주변 객체 형태와 그림자 영역 추출 정확도, 영상 노이즈 등에 큰 영향을 받는다. 반자동 VSA를 개선하기 위해서 본 논문은 단일 고해상도 전정색 영상과 다중분광 영상을 이용한 3차원 건물 정보 추출 방법을 제안한다. 제안된 방법은 각 밴드 영상에 반자동 VSA를 각각 적용하고 이를 통해서 계산된 파라미터로 비용함수를 구성한다. 비용함수로 계산된 값이 최대인 건물 높이를 실제 건물 높이로 결정한다. 제안된 방법의 성능평가를 위해서 Kompsat-2 영상이 사용되었으며 반자동 VSA와 제안된 방법으로 추출된 건물 정보를 비교 분석하였다. 그 결과는 제안된 방법이 보다 높은 성공률로 비교적정확한 건물 정보를 추출할 수 있음을 보여준다.

KCI등재

6최대 부피 Simplex 기반의 Isomap을 위한 랜드마크 추출

저자 : 지준화 ( Jun Hwa Chi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 509-516 (8 pages)

다운로드

(기관인증 필요)

초록보기

초분광 영상에 내재된 비선형 현상을 다루기 위해서는 과거에 주로 사용되었던 선형 피처 추출 방법은 적합하지 않았다. 따라서 최근 Manifold learning이라 불리우는 비선형 피처 추출 방법이 초분광 원격탐사 분야를 비롯 여러 분야에서 관심이 증가되고 있다. Manifold learning 방법 중 널리 이용되는 Isomap 은 분류와 분광 혼합 분석 등의 분야에서 좋은 결과를 보여주지만, 지나치게 복잡하고 높은 계산량은, 특히원격탐사 자료와 같이 자료의 크기가 큰 경우 문제가 된다. 따라서 자료의 일부분을 이용하는 랜드마크 기법이 해결책으로 제안 되었다. 본 연구에서는 좀 더 통제가 가능한 랜드마크 추출을 위해 자료를 구성하는 최대 부피를 지닌 Simplex를 이용하여 랜드마크를 선택하는 방법을 제안한다. 초분광 영상을 이용하여 랜드마크의 개수, 선택 방법에 따른 분류 정확도와 편차, 그리고 처리 시간을 비교하였고, 그 결과 제안된 랜드마크 선택 기법은 분류 정확도, 처리시간 모두에서 효율적인 결과를 보여주었다.

KCI등재

7시계열 MODIS 영상자료를 이용한 산림의 연간 탄소 흡수량 지도 작성

저자 : 차수영 ( Su Young Cha ) , 피웅환 ( Ung Hwan Pi ) , 박종화 ( Chong Hwa Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 517-525 (9 pages)

다운로드

(기관인증 필요)

초록보기

매일 단위로 수신되는 MODIS 인공위성자료를 이용하여 계산한 시계열 식생지수 자료는 1년 주기의 생물계절 특성을 나타내는 복잡한 파형으로 표현될 수 있다. 이러한 복잡한 파형도 단순한 파형의 합성으로 이루어지는데 이산 퓨리에 변환 분석 기법은 이들을 각각의 하모닉들로 추출해 내어 다양한 주기별로 생육을 달리하는 식생의 특성을 설명할 수 있다. 특히 이산 퓨리에 분석을 통해 도출된 시계열 식생지수 자료의 1차 하모닉 값은 1년 동안 변화하는 총 잎의 생장량을 나타내는 것으로써 나무의 상대성장회귀식 추정에 의해 식생이 1년 동안 탄소를 흡수한 양을 나타내는 지상부 바이오매스양을 설명한다. 따라서 1차 하모닉 값의 변화량은 1년 동안 식생이 탄소를 흡수하는 양을 나타낸다고 할 수 있는데, 시계열 MODIS 자료에서 추출된 6220여개의 표본들의 1차 하모닉 10년 평균값과 산림청의 입목 축적량 데이터를 통해 추정된 연간 단위면적당 이산화탄소 흡수량을 이용하여 수종별 비례상수를 도출할 수 있었다. 남한 산림지역에 한하여 총이산화탄소 흡수량은 2000년 이후 10년 평균 약 5천6백만톤으로 계산되었고 이것은 발표된 남한 산림의 연간 이산화탄소 흡수량에 근접하였다. 본 연구에서 제시한 방법은 보편적 비례상수를 이용하여 식생의 연간탄소 흡수량을 추정함으로써 시계열 위성영상 자료를 이용하여 매년 변화하는 산림의 이산화탄소 흡수량 지도를 반복하여 정량적으로 제작할 수 있는 환경공간정보를 제공한다.

KCI등재

8AISA 초분광 영상에 대한 Endmember 추출 알고리즘의 적용성 분석

저자 : 송아람 ( Ah Ram Song ) , 장안진 ( An Jin Chang ) , 김용일 ( Yong Il Kim ) , 최재완 ( Jae Wan Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 527-535 (9 pages)

다운로드

(기관인증 필요)

초록보기

분광혼합분석을 효과적으로 수행하기 위한 정확한 endmember의 추출은 반드시 선행되어야할 조건이며, 이를 위한 다양한 endmember 추출 알고리즘들이 개발되었다. 이러한 endmember 추출 알고리즘의 개발 및 적용성을 평가하기 위한 기존의 연구는 대부분 모의 초분광 영상 또는 AVIRIS 영상을 대상으로 진행되었다. 그러나 이러한 영상 자료는 실제 국내에서 획득되고 활용할 수 있는 초분광 영상과 차이를 보일수 있다. 따라서 본 연구에서는 국내에서 취득된 AISA 초분광 영상에 대하여 대표적인 endmember추출 알고리즘을 사용하고, 그 적용성을 평가하였다. 물질의 종류 및 크기에 따른 차이를 분석하기 위하여 인공적으로 설계한 테스트베드를 구축하고, AISA 초분광 영상을 취득하여 실험 자료로 이용하였다. 실험결과, 테스트베드 내 물질과 초기 입력값에 따라 알고리즘별로endmember 추출결과가 다르게 나타났다. 따라서 효과적인 endmember 추출 알고리즘을 적용하기 위해서는 영상을 구성하는 테스트베드 내 물질의 특성 및 최적의 endmember의 개수를 고려해야 할 것이다.

KCI등재

9KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류

저자 : 김상일 ( Sang Il Kim ) , 김현철 ( Hyun Cheol Kim ) , 신정일 ( Jung Il Shin ) , 홍순규 ( Soon Gu Hong )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 537-544 (8 pages)

다운로드

(기관인증 필요)

초록보기

남극 세종 과학 기지가 위치하고 있는 바톤반도는 눈과 식생이 주를 이루고 있고, 기후변화와 같은 환경변화에 민감하게 반응한다. 극지역의 지표 모니터링은 기후변화 이해를 위해 중요하다. 그러나 극 지역은 접근성 및 공간규모로 인해 지속적으로 모니터링 하기에 어려움이 있다. 위성영상은 지속적으로 동일지역을 모니터링 할 수 있다는 장점과 함께 다중분광영역을 이용하여 지표의 상태를 파악하는데 효율적이다. 따라서 본 연구에서는 바톤반도의 지표의 상태를 지속적으로 모니터링하기 위한 기초자료로 KOMPSAT-2다중 분광 위성영상을 이용하여 토지피복분류를 수행하였고, 나아가 분류된 토지피복 중 식생 종의 분포를 파악하였다. 다중분광영상인 KOMPSAT-2 위성영상과 현장관측자료를 이용하여 계층적 분류를 수행하였고 정확도를 평가하였다. 전반적으로 식생지역과 비식생 지역이 명확하게 분류되었으나 식생 종 분류에는 낮은 정확도를 보였다.

KCI등재

10GPS를 이용한 미국 알래스카 어거스틴 화산의 지표변위 감시 -2006년 분화를 중심으로-

저자 : 김수경 ( Su Kyung Kim ) , 황의홍 ( Eui Hong Hwang ) , 김영화 ( Young Hwa Kim ) , 이창욱 ( Chang Wook Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 545-554 (10 pages)

다운로드

(기관인증 필요)

초록보기

미국 알래스카의 알류산열도에 위치하는 어거스틴 화산은 인근 지역에 위치하는 많은 화산들 중 가장 움직임이 활발한 화산중 하나로, 가장 최근에 발생한 2006년 분화 당시 1월 11일부터 28일까지 총 14번의 분출을 하였으며, 최종적으로 화산폭발지수 3으로 기록되었다. 본 연구에서는 어거스틴에 설치되어 상시운영 중인 12개 GPS 관측소의 2005년부터 2011년까지 관측데이터를 이용하여 2006년 분화 전·후 지표변위 양상을 확인하고 다각도의 분석을 시도하였다. 모든 자료처리는 Bernese GPS Software V5.0를 이용하여 진행하였으며, 어거스틴 화산 인근(약 24.5 km)에 위치한 AC59 관측소를 기지점으로 하는 정밀 기선해석이 수행되었다. 그 결과 분화가 발생하기 약 4개월 전부터 분화구 주변에서 평균 9.7 cm/yr 속도로 지표가 부풀어 오르는 양상이 뚜렷하게 나타났으며, 분화 발생 이후 -9.2 cm/yr의 급격한 침하현상이 확인되었다. 화산활동이 안정기에 접어든 이후에는 화산의 북쪽 사면에 설치된 일부 관측소에서 분화 당시 흘러내린 화산쇄설물의 다짐작용에 의한 침하 현상이 확인되었다. 이러한 결과는 GPS를 이용하여 관측한 지표의 변화가 화산활동을 감시하고 예측하는데 유용한 자료로 사용될 수 있음을 시사한다.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기