논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석

KCI등재

Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석

Time-series Analysis of Pyroclastic Flow Deposit and Surface Temperature at Merapi Volcano in Indonesia Using Landsat TM and ETM

조민지 ( Min Ji Cho ) , 종루 ( Zhong Lu ) , 이창욱 ( Chang Wook Lee )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 29권5호
  • : 연속간행물
  • : 2013년 10월
  • : 443-459(17pages)
대한원격탐사학회지

DOI


목차


					

키워드 보기


초록 보기

자바 섭입대 위에 존재하는 인도네시아 메라피 화산은 1~5년의 주기를 가지는 화산활동이 활발한 성층화산이다. 대체적으로 화산폭발지수가 1-3정도의 규모로 나타나는데 비해 최근 2010년 분화는 화산폭발지수가 4까지 올라가 386명을 사망자를 유발했다. 본 연구에서는 40년간 지구를 관측해온 Landsat 영상을 이용하여 18년 동안 메라피 화산의 지표변화를 관측하였다. 연구를 위해 1994년 7월 6일부터 2012년 9월 1일까지 총 55장의 Landsat-5,7 영상을 수집하였으며, 밴드조합영상을 통해 화산쇄설류의 흐름이 시간에 따라 이동함을 확인하였다. 화산쇄설류가 덮고 있는 지역을 추출하기 위해서, COST model을 이용한 대기보정 후 감독분류를 수행하였으며, 그 결과 CVP 보고서에 기재된 화산쇄설류의 분화 방향과 추출된 화산쇄설류 영역의 변화가 거의 일치했다. NASA에서 제공하는 Landsat-5,7 위성의 열적외선 밴드를 이용한 온도 추출 기법을 적용하여 분화구 지역의 평균 지표온도를 산출한 결과, 분화 전 지표 온도가 급격히 상승하고, 분화 후 온도가 하강하는 양상을 반복적으로 나타냈다. 비록 기상조건에 따른 영상획득에 제약이 있지만, 장기간 발생된 메라피 화산의 지표변화를 확인하는데 있어서 Landsat 위성 영상이 매우 유용한 도구임을 확인했다.
Located on Java subduction zone, Merapi volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Merapi`s eruptions were relatively small with VEI 1-3. However, the most recent eruption occurred in 2010 was quite violent with VEI 4 and 386 people were killed. In this study, we have attempted to study the characteristics of Merapi`s eruptions during 18 years using optical Landsat images. We have collected a total of 55 Landsat images acquired from July 6, 1994 to September 1, 2012 to identify pyroclastic flows and their temporal changes from false color images. To extract areal extents of pyroclastic flows, we have performed supervised classification after atmospheric correction by using COST model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the CVP monthly reports. We have converted the thermal band of Landsat TM and ETM+ to the surface temperature using NASA empirical formula and calculated time-series of the mean surface temperature in the area of peak temperature surrounding the crater. The mean surface temperature around the crater repeatedly showed the tendency to rapidly rise before eruptions and cool down after eruptions. Although Landsat satellite images had some limitations due to weather conditions, these images were useful tool to observe the precursor changes in surface temperature before eruptions and map the pyroclastic flow deposits after eruptions at Merapi volcano.

UCI(KEPA)

I410-ECN-0102-2014-500-001869830

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1815


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권5호(2022년 10월) 수록논문
최근 권호 논문
| | | |

KCI등재

1습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구

저자 : 홍상훈 ( Sang-hoon Hong ) , Shimon Wdowinski

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 447-460 (14 pages)

다운로드

(기관인증 필요)

초록보기

인공위성 영상레이더 위상간섭기법은 널리 활용되고 있는 원격탐사 기술로서 지진, 화산, 지반침하 등으로부터 발생한 단단한 지각 표면의 변위를 매우 정밀하게 주기적으로 관측할 수 있는 연구 활용분야의 한 종류이다. 습지대 환경처럼 수상 표면에 식생이 존재하는 경우에는 지표면과 동일한 방법을 적용하여 넓은 지역에 대한 높은 공간해상도의 수위 변화 지도 제작이 가능하다. 현재 다양한 파장 대역의 인공위성 영상레이더 시스템이 운용 중에 있으며 여기에는 넓은 지역에 대한 영상을 효과적으로 획득할 수 있는 광역 관측 ScanSAR 모드를 제공하는 위성도 다수 포함되어 있다. 본 논문의 연구 지역인 콜롬비아 북부의 Ciénaga Grande de Santa Marta (CGSM) 습지대는 카리브 해안을 따라 고지대에 위치한 광대한 습지 지역이다. CGSM 습지대는 해수면 상승과 기후 변화와 같은 자연적인 원인 뿐만 아니라 20세기 후반부터 시작된 농업개발 및 도시확장 등의 다양한 인간 활동으로 인한 심각한 환경적 위협을 받고 있다. 최근 해당 습지 지역에 대한 생태학적 중요성이 대두되면서 해당 습지를 보호하고 복원하기 위한 다양한 계획이 진행 중에 있다. 주기적인 습지대 환경 모니터링에 있어 수위 변화 관측은 매우 중요한 자료를 제공하며 일반적으로 수위계와 같은 현장관측 자료 등에 의존하는 경우가 많다. 수위계의 경우 시간적으로 연속적인 자료 관측이 가능하지만 공간적 분포를 이해하기에는 어려운 경우가 많다. 본 연구에서는 현장 관측의 공간적 해상도의 부족함을 보완하기 위한 L-밴드 ALOS-2 PALSAR-2 ScanSAR 광역 관측 모드 자료의 영상레이더 위상간섭기법 습지대 수위 변화 관측 활용 가능성에 대해 평가하고자 한다. 광역 관측 모드의 공간해상도 및 위상간섭도 품질 비교를 위해 ALOS-2 PALSAR-2 stripmap 고해상 모드와 함께 분석하였다.


It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

KCI등재

2시계열 토지피복도 제작을 위한 준감독학습 기반의 훈련자료 자동 추출

저자 : 곽근호 ( Geun-ho Kwak ) , 박노욱 ( No-wook Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 461-469 (9 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 시계열 토지피복도를 제작하기 위해 분석자 개입 없이 준감독학습 기반 분류를 이용하는 새로운 훈련자료 추출 기법을 제안하였다. 준감독학습 기반 훈련자료 추출 기법은 먼저 분류 대상 영상과 유사한 토지피복 특성을 포함하는 과거 영상으로부터 획득한 초기 훈련자료를 이용하여 초기 분류를 수행한다. 이후, 분류의 불확실성 정보와 인접 화소의 분류 항목을 제약 조건으로 이용하는 준감독학습 기반 반복 분류를 이용하여 초기 분류 결과로부터 신뢰할 수 있는 훈련자료를 추출한다. 준감독학습 기반 훈련자료 추출 기법의 적용 가능성은 농경지에서 unmanned aerial vehicle 영상을 이용하는 분류 실험을 통해 평가되었다. 제안한 준감독학습 기반 훈련자료 추출 기법에 의해 자동으로 추출된 새로운 훈련자료를 이용하는 것은 초기 분류 결과에서 나타난 오분류를 두드러지게 완화할 수 있었다. 특히, 인접 화소의 공간 문맥 정보를 고려함으로써 고립된 화소가 크게 감소하였다. 결과적으로, 제안 기법의 분류 정확도는 수동으로 추출한 훈련자료를 이용하는 분류 정확도와 유사하였다. 이러한 결과는 이 연구에서 제시한 준감독학습 기반 반복 분류가 시계열 토지피복도를 제작하기 위해 신뢰할 수 있는 훈련자료를 자동으로 추출하는데 효과적으로 적용될 수 있음을 나타낸다.


This paper presents a novel training data extraction approach using semi-supervised learning (SSL)-based classification without the analyst intervention for time-series land-cover mapping. The SSL-based approach first performs initial classification using initial training data obtained from past images including land-cover characteristics similar to the image to be classified. Reliable training data from the initial classification result are then extracted from SSL-based iterative classification using classification uncertainty information and class labels of neighboring pixels as constraints. The potential of the SSL-based training data extraction approach was evaluated from a classification experiment using unmanned aerial vehicle images in croplands. The use of new training data automatically extracted by the proposed SSL approach could significantly alleviate the misclassification in the initial classification result. In particular, isolated pixels were substantially reduced by considering spatial contextual information from adjacent pixels. Consequently, the classification accuracy of the proposed approach was similar to that of classification using manually extracted training data. These results indicate that the SSL-based iterative classification presented in this study could be effectively applied to automatically extract reliable training data for time-series land-cover mapping.

KCI등재

3전산유체역학 모델을 활용한 여름철 종관기상관측소의 기온과 바람 관측 환경 평가

저자 : 강정은 ( Jung-eun Kang ) , 노주환 ( Ju-hwan Rho ) , 김재진 ( Jae-jin Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 471-484 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 전산유체역학 모델을 이용하여 기상청에서 운용하는 종관기상관측소(automated synoptic observing system, ASOS) 10개 지점을 대상으로 ASOS 주변 지형과 건물이 기온과 바람(풍속, 풍향) 관측 환경에 미치는 영향을 분석하였다. ASOS에서 최근 10년간 8월의 관측 자료를 기반으로 전산유체역학(computational fluid dynamics, CFD) 모델의 초기·경계 자료를 구축하였다. 실제 토지 피복을 고려한 경우와 모든 피복을 초지로 가정한 경우에 대해, 관측 고도에서 초기 기온 대비 기온 변화율을 비교함으로써 기온 관측 환경을 분석하였다. 기온 관측 환경은 관측 지점 주위의 토지 피복에 의한 영향을 많이 받았다. ASOS 주변에 지표면 온도가 높은 건물과 도로가 밀집한 경우에 기온 변화율이 크게 나타났다. 반면, 모든 토지 피복을 초지로 가정한 경우에는 초기 기온 대비 기온 변화율이 작았다. 실제 토지 피복을 고려하여 관측 고도의 유입류 대비 풍속 변화율과 풍향 변화를 비교함으로써 풍속과 풍향 관측 환경을 분석하였다. 풍속과 풍향은 ASOS 주변에 관측 고도보다 높거나 비슷한 높이의 지형과 건물 영향을 크게 받았으며, 원거리에 위치한 장애물에 의한 영향도 나타났다. 본 연구 결과는 종관기상관측소의 이전과 신설 단계에서 관측 환경 평가에 활용될 것이다.


This study examined the effects of topography and buildings around the automated synoptic observing system (ASOS) on the observation environment of air temperatures and wind speeds and directions using a computational fluid dynamics (CFD) model. For this, we selected 10 ASOSs operated by the Korea Meteorological Administration. Based on the data observed at the ASOSs in August during the recent ten years, we established the initial and boundary conditions of the CFD model. We analyzed the temperature observation environment by comparing the temperature change ratios in the case considering the actual land-cover types with those assuming all land-cover types as grassland. The land-cover types around the ASOSs significantly affected the air temperature observation environment. The temperature change ratios were large at the ASOSs around which buildings and roads were dense. On the other hand, when all land covers were assumed as grassland, the temperature change ratios were small. Wind speeds and directions at the ASOSs were also significantly influenced by topography and buildings when their heights were higher or similar to the observation heights. Obstacles even located at a long distance affected the wind observation environments. The results in this study would be utilized for evaluating ASOS observation environments in the relocating or newly organizing steps.

KCI등재

4RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험

저자 : 김광섭 ( Kwangseob Kim ) , 이기원 ( Kiwon Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 485-496 (12 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서 RapidEye 위성영상 대기 및 지표반사도 산출물을 생성하는 소프트웨어를 구현하였다. 이 소프트웨어는 절대대기보정 알고리즘을 채택하고 있는 오픈소스 원격탐사 소프트웨어 Orfeo Toolbox (OTB) 기반 Extension이다. 소프트웨어 성능을 확인하기 위하여 구현 결과인 산출물 정확도는 Radiometric Calibration Network (RadCalNet) 사이트의 데이터와 해당 위치에 촬영된 RapidEye 영상을 사용하여 검증하고자 하였다. 또한 거의 같은 일자에 같은 지역을 촬영한 KOMPSAT-3A 영상으로부터 생성한 지표반사도와 Landsat Analysis Ready Data (ARD) 제품 중 하나인 지표반사도 자료도 함께 비교하였다. 이 외에도 같은 영상에 대하여 상업 도구에서 지원하는 QUick Atmospheric Correction (QUAC)와 Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 도구를 적용한 처리 결과와 직접 비교 연구를 수행하였다. RadCalNet 자료에 대비하여 KOMPSAT 지표반사도와 마찬가지로 이 Extension에서 얻은 결과는 5% 이내 일치 수준의 정확도를 나타내었고 QUAC와 FLAASH를 이용한 결과에 비하여 모든 밴드 영상에서 상대적으로 우수한 정확도를 보이는 것으로 나타났다. 농업, 산림이나 환경 분야에서 Red-Edge 밴드의 중요성이 강조되고 있기 때문에 이 소프트웨어를 이용하여 산출되는 RapidEye 영상의 지표반사도 활용도 증가할 것으로 기대한다.


This study is for the software implementation to generate atmospheric and surface reflectance products from RapidEye satellite imagery. The software is an extension based on Orfeo Toolbox (OTB) and an open-source remote sensing software including calibration modules which use an absolute atmospheric correction algorithm. In order to verify the performance of the program, the accuracy of the product was validated by a test image on the Radiometric Calibration Network (RadCalNet) site. In addition, the accuracy of the surface reflectance product generated from the KOMPSAT-3A image, the surface reflectance of Landsat Analysis Ready Data (ARD) of the same site, and near acquisition date were compared with RapidEye-based one. At the same time, a comparative study was carried out with the processing results using QUick Atmospheric Correction (QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool supported by a commercial tool for the same image. Similar to the KOMPSAT-3A-based surface reflectance product, the results obtained from RapidEye Extension showed accuracy of agreement level within 5%, compared with RadCalNet data. They also showed better accuracy in all band images than the results using QUAC or FLAASH tool. As the importance of the Red-Edge band in agriculture, forests, and the environment applications is being emphasized, it is expected that the utilization of the surface reflectance products of RapidEye images produced using this program will also increase.

KCI등재

5농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용

저자 : 이슬찬 ( Seulchan Lee ) , 정재환 ( Jaehwan Jeong ) , 오승철 ( Seungcheol Oh ) , 정하규 ( Hagyu Jeong ) , 최민하 ( Minha Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 497-510 (14 pages)

다운로드

(기관인증 필요)

초록보기

농업용 저수지는 수자원이 계절적으로 편중된 한반도에서 갈수기 용수 공급을 위한 필수적인 구조물이다. 효율적인 물 관리를 위해서는 중소규모 저수지에 대한 체계적이고 효과적인 모니터링이 필요하며, 합성개구 레이더(Synthetic Aperture Radar, SAR) 영상은 전천후 관측이 가능하다는 특징과 함께 연속적인 저수지 모니터링을 위한 도구가 된다. 본 연구에서는 10 m급 해상도를 갖는 Sentinel-1 SAR 영상과 1 m급 해상도의 Capella XSAR 영상을 활용하여 울산광역시 차리, 갈전, 뒷골 저수지의 수체를 탐지하였으며, 이를 통해 국내 중소규모 저수지 모니터링에의 활용성을 평가하고자 하였다. Z fuzzy function 기반 임계값 산정을 통한 영상분할기법과 객체 탐지 기반 분할기법인 Chan-vese (CV) 기법을 통해 수체 영역을 산정하였으며, UAV 영상과의 비교를 통해 성능을 정량적으로 평가하였다. 임계값 기반 탐지 정확도는 Sentinel-1의 경우 약 0.87, 0.89, 0.77 (차리, 갈전, 뒷골), Capella의 경우 약 0.78, 0.72, 0.81로 나타났으며, CV 기법 적용 시 모든 저수지에서 정확도가 향상되는 것을 확인하였다(Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Capella는 모든 저수지/분할기법에 대해 수체와 비수체의 경계를 비교적 뚜렷하게 모의하였으나, 고해상도로 인한 speckle noise가 충분히 평활화되지 않아 오탐지 및 미탐지가 다소 발생하였다. 오탐지의 제거를 위해 광학 센서 기반 보조자료를 활용하여 마스킹한 결과, 정확도가 최대 13% 향상되는 것을 확인할 수 있었다. 본 연구 결과를 바탕으로 SAR 위성 기반 더욱 정확한 저수지 탐지가 이루어진다면 소규모 저수지를 포함, 종합적인 가용수량에 대한 연속적인 모니터링이 가능할 것이며, 효과적인 수자원 관리에 기여할 수 있을 것으로 기대된다.


Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

KCI등재

6DeepLabV3+를 이용한 이종 센서의 구름탐지 기법 연구

저자 : 김미정 ( Mi-jeong Kim ) , 고윤호 ( Yun-ho Ko )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 511-521 (11 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

위성영상에서의 구름 탐지 및 제거는 지형관측과 분석을 위해 필수적인 과정이다. 임계값 기반의 구름 탐지 기법은 구름의 물리적인 특성을 이용하여 탐지하므로 안정적인 성능을 보여주지만, 긴 연산시간과 모든 채널의 영상 및 메타데이터가 필요하다는 단점을 가지고 있다. 최근 활발히 연구되고 있는 딥러닝을 활용한 구름탐지 기법은 4개 이하의 채널(RGB, NIR) 영상만을 활용하고도 짧은 연산시간과 우수한 성능을 보여주고 있다. 본 논문에서는 해상도가 다른 이종 데이터 셋을 활용하여 학습데이터 셋에 따른 딥러닝 네트워크 성능 의존도를 확인하였다. 이를 위해 DeepLabV3+ 네트워크를 구름탐지의 채널 별 특징이 추출되도록 개선하고 공개된 두 이종 데이터 셋과 혼합 데이터로 각각 학습하였다. 실험결과 테스트 영상과 다른 종류의 영상으로만 학습한 네트워크에서는 낮은 Jaccard 지표를 보여주었다. 그러나 테스트 데이터와 동종의 데이터를 일부 추가한 혼합 데이터로 학습한 네트워크는 높은 Jaccard 지표를 나타내었다. 구름은 사물과 달리 형태가 구조화 되어 있지 않아 공간적인 특성보다 채널 별 특성을 학습에 반영하는 것이 구름 탐지에 효과적이므로 위성 센서의 채널 별 특징을 학습하는 것이 필요하기 때문이다. 본 연구를 통해 해상도가 다른 이종 센서의 구름탐지는 학습 데이터 셋에 매우 의존적임을 확인하였다.


Cloud detection and removal from satellite images is an essential process for topographic observation and analysis. Threshold-based cloud detection techniques show stable performance because they detect using the physical characteristics of clouds, but they have the disadvantage of requiring all channels' images and long computational time. Cloud detection techniques using deep learning, which have been studied recently, show short computational time and excellent performance even using only four or less channel (RGB, NIR) images. In this paper, we confirm the performance dependence of the deep learning network according to the heterogeneous learning dataset with different resolutions. The DeepLabV3+ network was improved so that channel features of cloud detection were extracted and learned with two published heterogeneous datasets and mixed data respectively. As a result of the experiment, clouds' Jaccard index was low in a network that learned with different kind of images from test images. However, clouds' Jaccard index was high in a network learned with mixed data that added some of the same kind of test data. Clouds are not structured in a shape, so reflecting channel features in learning is more effective in cloud detection than spatial features. It is necessary to learn channel features of each satellite sensors for cloud detection. Therefore, cloud detection of heterogeneous sensors with different resolutions is very dependent on the learning dataset.

KCI등재

7영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험

저자 : 박소연 ( Soyeon Park ) , 강솔아 ( Sol A Kang ) , 박노욱 ( No-wook Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 523-533 (11 pages)

다운로드

(기관인증 필요)

초록보기

이 논문에서는 상호보완적인 공간 및 분광해상도를 가진 다중센서 위성영상을 이용하여 공간해상도와 분광해상도를 향상시키기 위해 영역-점 회귀 크리깅(area-to-point regression kriging, ATPRK) 기반의 2단계 spatio-spectral fusion method (2SSFM)을 제안하였다. 2SSFM은 ATPRK와 random forest 회귀 모형을 결합하여 다중센서 위성영상에서 높은 공간해상도를 갖는 분광 밴드를 예측한다. 첫 번째 단계에서는 다중센서 위성영상 사이의 공간해상도 차이를 감소시키기 위해 ATPRK 기반 공간 상세화를 수행한다. 두 번째 단계에서는 다중센서 위성영상 사이의 분광 밴드의 관계성을 정량화하기 위해 random forest를 이용한 회귀 모델링을 적용하였다. 2SSFM의 예측 성능은 적색 경계와 단파 적외선 밴드를 생성하는 사례 연구를 통해 평가하였다. 사례 연구에서 2SSFM은 실제 분광 밴드와 유사한 분광패턴을 보이면서 공간해상도가 향상된 적색 경계와 단파 적외선 밴드를 생성할 수 있었으며, 2SSFM가 고해상도 위성영상에서 제공하지 않은 분광 밴드 생성에 유용함을 확인할 수 있었다. 따라서 2SSFM을 통해 실제로 획득 불가능하지만 환경 모니터링에 효과적인 분광 밴드를 예측함으로써 다양한 분광 지수를 생성할 수 있을 것으로 기대된다.


This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial downscaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

KCI등재

8드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발

저자 : 류재현 ( Jae-hyun Ryu ) , 한중곤 ( Jung-gon Han ) , 안호용 ( Ho-yong Ahn ) , 나상일 ( Sang-il Na ) , 이병모 ( Byungmo Lee ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 535-543 (9 pages)

다운로드

(기관인증 필요)

초록보기

농업분야에서 드론을 활용하여 작물의 생육을 진단하고 정보를 영상으로 제공하고 있다. 들녘 단위에 대한 고해상도 드론 영상을 활용하는 경우 객체별 생육정보를 생산할 수 있으나 정확하게 작물을 탐지하고 인접한 객체를 효율적으로 구분하기 위한 작업이 요구된다. 본 연구에서는 작물 객체를 탐지하고 위치 정보를 추출하는 알고리즘을 개발하는 것이 목적이다. 드론 다중분광영상과 컴퓨터 비전 기술을 활용하여 객체 탐지를 위한 알고리즘을 개발하였으며, 대상 작물은 가을배추로 선정하였다. 2018년~2020년까지 가을배추를 대상으로 정식 후 7일~15일 사이의 드론 영상을 취득하였으며, 2019년 영상 기반으로 객체 탐지 알고리즘을 개발한 뒤 2018년, 2020년 영상을 기반으로 알고리즘 평가를 수행하였다. 분광반사도 기반 지수와 식생의 분광 반사도 특성을 고려하여 식생 지역을 추출하였다. 이후 추출된 식생 지역에서 객체의 크기를 고려하여 팽창(Dilatation), 침식(Erosion), 이미지 분할 등과 같은 모폴로지(Morphology) 기법을 통해 객체 탐지 정확도를 향상시켰다. 개발된 객체 탐지 알고리즘의 정밀도는 95.19% 이상이었으며, 재현율과 정확도는 각각 95.4%, 93.68% 이상이었다. 객체 탐지 알고리즘의 F1-Score는 0.967 이상으로 나타났다. 본 연구에서 개발한 알고리즘을 이용하여 추출된 배추 객체 중심에 대한 위치 정보는 작물의 재배시기에 따라 영농단계별 의사결정 정보를 제공하기 위한 자료로써 활용될 것이다.


A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.

KCI등재

9Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구

저자 : 이슬기 ( Seulki Lee ) , 송종성 ( Jong-sung Song ) , 이창욱 ( Chang-wook Lee ) , 고보균 ( Bokyun Ko )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 545-557 (13 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

본 연구는 직접적인 접근이 어려운 demilitarized zone (DMZ)의 산불 피해 지역을 파악하기 위하여, 고해상도 위성영상 및 머신러닝 기반의 감독 분류 기법을 이용하였다. 고해상도 위성 영상은 Sentinel-2 A/B를 이용하였으며, SVM 감독분류 기법을 기반으로 토지피복도를 산출하였다. DMZ 산불 피해 지역을 분류하기 위한 최적의 조합을 찾기 위하여 SVM 내에 다양한 커널과 밴드 조합에 따른 감독 분류를 진행하고 오차 행렬을 통해 정확도를 평가하였다. 또한, 2020년, 2021년은 위성영상 자료 기반의 산불 탐지 결과와 산불 연보의 피해 지역 면적 간의 비교를 통한 검증을 수행하였다. 이후, 현재 피해 면적 자료가 없는 2022년의 산불 피해 지역을 탐지함으로써 신뢰할 만한 수준의 결과를 신속적으로 파악하고자 하였다.


This study used high-resolution satellite images and supervised classification technique based on machine learning method in order to detect the areas affected by wildfires in the demilitarized zone (DMZ) where direct access is difficult. Sentinel-2 A/B was used for high-resolution satellite images. Land cover map was calculated based on the SVM supervised classification technique. In order to find the optimal combination to classify the DMZ wildfire damage area, supervised classification according to various kernel and band combinations in the SVM was performed and the accuracy was evaluated through the error matrix. Verification was performed by comparing the results of the wildfire detection based on satellite image and data by the wildfire statistical annual report in 2020 and 2021. Also, wildfire damage areas was detected for which there is no current data in 2022. This is to quickly determine reliable results.

KCI등재

10광학 위성 영상 기반 선박탐지의 정확도 개선을 위한 딥러닝 초해상화 기술의 영향 분석

저자 : 박성욱 ( Seongwook Park ) , 김영호 ( Yeongho Kim ) , 김민식 ( Minsik Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 5호 발행 연도 : 2022 페이지 : pp. 559-570 (12 pages)

다운로드

(기관인증 필요)

초록보기

광학 위성 영상의 공간해상도가 낮게 되면 크기가 작은 객체들의 경우 객체 탐지의 어려움이 따른다. 따라서 본 연구에서는 위성 영상의 공간해상도를 향상시키는 초해상화(Super-resolution) 기술이 객체 탐지 정확도 향상에 대한 영향이 유의미한지 알아보고자 하였다. 쌍을 이루지 않는(unpaired) 초해상화 알고리즘을 이용하여 Sentinel-2 영상의 공간해상도를 3.2 m로 향상시켰으며, 객체 탐지 모델인 Faster-RCNN, RetinaNet, FCOS, S2ANet을 활용하여 초해상화 적용 유무에 따른 선박 탐지 정확도 변화를 확인했다. 그 결과 선박 탐지 모델의 성능 평가에서 초해상화가 적용된 영상으로 학습된 선박 탐지 모델들에서 Average Precision (AP)가 최소 12.3%, 최대 33.3% 향상됨을 확인하였고, 초해상화가 적용되지 않은 모델에 비해 미탐지 및 과탐지가 줄어듦을 보였다. 이는 초해상화 기술이 객체 탐지에서 중요한 전처리 단계가 될 수 있다는 것을 의미하고, 객체 탐지와 더불어 영상 기반의 다른 딥러닝 기술의 정확도 향상에도 크게 기여할 수 있을 것으로 기대된다.


When a satellite image has low spatial resolution, it is difficult to detect small objects. In this research, we aim to check the effect of super resolution on object detection. Super resolution is a software method that increases the resolution of an image. Unpaired super resolution network is used to improve Sentinel-2's spatial resolution from 10 m to 3.2 m. Faster-RCNN, RetinaNet, FCOS, and S2ANet were used to detect vessels in the Sentinel-2 images. We experimented the change in vessel detection performance when super resolution is applied. As a result, the Average Precision (AP) improved by at least 12.3% and up to 33.3% in the ship detection models trained with the super-resolution image. False positive and false negative cases also decreased. This implies that super resolution can be an important pre-processing step in object detection, and it is expected to greatly contribute to improving the accuracy of other image-based deep learning technologies along with object detection.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석

저자 : 조민지 ( Min Ji Cho ) , 종루 ( Zhong Lu ) , 이창욱 ( Chang Wook Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 443-459 (17 pages)

다운로드

(기관인증 필요)

초록보기

자바 섭입대 위에 존재하는 인도네시아 메라피 화산은 1~5년의 주기를 가지는 화산활동이 활발한 성층화산이다. 대체적으로 화산폭발지수가 1-3정도의 규모로 나타나는데 비해 최근 2010년 분화는 화산폭발지수가 4까지 올라가 386명을 사망자를 유발했다. 본 연구에서는 40년간 지구를 관측해온 Landsat 영상을 이용하여 18년 동안 메라피 화산의 지표변화를 관측하였다. 연구를 위해 1994년 7월 6일부터 2012년 9월 1일까지 총 55장의 Landsat-5,7 영상을 수집하였으며, 밴드조합영상을 통해 화산쇄설류의 흐름이 시간에 따라 이동함을 확인하였다. 화산쇄설류가 덮고 있는 지역을 추출하기 위해서, COST model을 이용한 대기보정 후 감독분류를 수행하였으며, 그 결과 CVP 보고서에 기재된 화산쇄설류의 분화 방향과 추출된 화산쇄설류 영역의 변화가 거의 일치했다. NASA에서 제공하는 Landsat-5,7 위성의 열적외선 밴드를 이용한 온도 추출 기법을 적용하여 분화구 지역의 평균 지표온도를 산출한 결과, 분화 전 지표 온도가 급격히 상승하고, 분화 후 온도가 하강하는 양상을 반복적으로 나타냈다. 비록 기상조건에 따른 영상획득에 제약이 있지만, 장기간 발생된 메라피 화산의 지표변화를 확인하는데 있어서 Landsat 위성 영상이 매우 유용한 도구임을 확인했다.

KCI등재

2논벼 NPP 지수를 이용한 우리나라 벼 수량 추정 -MODIS 영상과 CASA 모형의 적용-

저자 : 나상일 ( Sang Il Na ) , 홍석영 ( Suk Young Hong ) , 김이현 ( Yi Hyun Kim ) , 이경도 ( Kyoung Do Lee ) , 장소영 ( So Young Jang )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 461-476 (16 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기

CASA 모델은 작물의 순 일차생산량(NPP)을 추정하는 가장 빠르고 정확한 모델 중 하나이다. 본 연구의 목적은 (1) 2002년 ~ 2012년 동안 한국의 논지역을 대상으로 작물 NPP의 시공간적 변화 패턴을 분석하고, (2) 연간 NPP와 쌀 생산성 간의 관계를 파악하여, (3) MODIS Product와 태양 복사량을 CASA 모형에 적용하여 2012년 한국의 쌀 수량을 추정하는 것이다. 또한, (4) 통계청이 발표한 최종 수량과 비교를 통해적용을 검토하였다. 이를 위해, 월별 또는 누적 NPP와 수량과의 상관분석을 실시하였다. 그 결과, 총 누적 NPP와 9월의 NPP가 쌀 수량과 높은 상관성을 나타내었으며, 이를 이용하여 추정한 2012년 예측 수량은 누적 NPP 적용시 526.93 kg/10a, 9월의 NPP 적용시 520.32 kg/10a로 추정되었다. 통계청의 최종 수량과의 RMSE는 각각 9.46 kg/10a, 12.93 kg/10a를 나타내었으나, 전반적으로 두 모형 모두 1:1선에 근접한 결과를 보이고 있어 NPP를 이용한 벼 수량 추정 모형이 논벼 수량의 변화특성을 잘 반영하고 있는 것으로 판단된다.

KCI등재

3항공사진을 이용한 방포항 인근 해빈의 장기간 해안선 변화 분석

저자 : 김백운 ( Baeck Oon Kim ) , 윤공현 ( Kong Hyun Yun ) , 이창경 ( Chang Kyung Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 477-486 (10 pages)

다운로드

(기관인증 필요)

초록보기

장기간 해안선 변화 자료의 구축을 통해 해안선의 시·공간적인 변화 양상을 분석하고, 이에 근거하여 해안침식의 향후 경향을 파악하는 일은 연안관리에 매우 중요한 역할을 한다. 본 연구에서는 수치항공사진을 이용하여 방포항 인근 해안지역의 장기간(1985년 ~ 2009년) 해안선 변화 탐지를 위해 항공삼각측량, 지상기준점측량, 수치도화, 그리고 해안선 변화율을 산정하였다. 그 결과 방포해빈과 꽃지해빈의 해안선은 각각 0.2 m/yr와 최대 0.8 m/yr로 침식된 것으로 파악되었다. 또한 등고선 변화 통하여 꽃지 해빈의 북부지역에서 침식현상이 가장 뚜렷하게 나타났으며 표고 1 m 간격의 등고선은 최대 45 m 후퇴하였음을 알수 있었다. 이러한 변화는 다양하고 복합적인 요인에 의해 발생할 수 있으며 주된 요인은 1990년대 말에 설치된 해변 옹벽이 해안침식을 일으키는 주요 원인으로서 추정되고 있다.

KCI등재

4스테레오 영상분석에 기반한 DSM 과대오차영역의 자동검출기법연구

저자 : 정재훈 ( Jae Hoon Jeong ) , 김태정 ( Tae Jung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 487-497 (11 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 고해상도 스테레오 영상분석에 기반하여 DSM에 존재하는 오차들을 효율적으로 검출하는 기법을 제시한다. 스테레오 영상정합을 통한 DSM 자동생성은 여러 가지 측면에서 DSM 확보를 위한 유용한 방법이 될 수 있는데, 자동생성 과정에서 발생하는 과대오차들을 포함하고 있어 이를 개선하기 위한 효율적 검출 방법이 필요하다. 본 연구에서는 고해상도 스테레오 영상을 활용한 상관계수 분석 기법을 적용하여 DSM의 모든 격자의 신뢰도를 나타낸다. 제안 기법을 적용하면, DSM 정확도에 치명적인 영향을 주어 우선적으로 보정이 요구되는 과대오차 지역을 자동으로 검출할 수 있다. 해당 지역의 참값 DSM을 활용하여 제안기법의 신뢰성을 확인하였으며 실험결과로부터 제안기법이 효율적인 DSM 보정을 위한 유용한 DSM 오차분석 기법이 될 수 있음을 확인하였다. 제안된 기법은 다양한 DSM 및 DEM 자료의 오차분석에 활용이 가능하며 따라서, 신뢰성 있는 DSM 및 DEM 확보에 유용하게 활용될 수 있을 것으로 기대한다.

KCI등재

5고해상도 전정색 영상과 다중분광 영상을 활용한 그림자 분석기반의 3차원 건물 정보 추출

저자 : 이태윤 ( Tae Yoon Lee ) , 김윤수 ( Youn Soo Kim ) , 김태정 ( Tae Jung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 499-508 (10 pages)

다운로드

(기관인증 필요)

초록보기

각종 센서 정보에 기반한 3차원 건물 정보 추출 방법은 건물 형태를 보다 상세하게 묘사할 수 있지만 많은 비용 및 복잡한 처리가 요구된다. 단일 고해상도 영상에 기반한 방법은 추출할 수 있는 3차원 건물정보가 비교적 제한적이지만 낮은 비용과 단순한 처리 과정으로 건물 정보를 추출할 수 있다는 장점을 갖는다. 단일 고해상도 위성영상만을 이용한 건물 정보 추출 방법 중에서도 Volumetric Shadow Analysis(VSA)는 그림자나 건물 밑 바닥이 일부분 가려져도 해당 건물의 높이와 바닥 위치 정보를 추출할 수 있다. 최근에는 반자동 VSA가 제안되었으나 이 방법은 주변 객체 형태와 그림자 영역 추출 정확도, 영상 노이즈 등에 큰 영향을 받는다. 반자동 VSA를 개선하기 위해서 본 논문은 단일 고해상도 전정색 영상과 다중분광 영상을 이용한 3차원 건물 정보 추출 방법을 제안한다. 제안된 방법은 각 밴드 영상에 반자동 VSA를 각각 적용하고 이를 통해서 계산된 파라미터로 비용함수를 구성한다. 비용함수로 계산된 값이 최대인 건물 높이를 실제 건물 높이로 결정한다. 제안된 방법의 성능평가를 위해서 Kompsat-2 영상이 사용되었으며 반자동 VSA와 제안된 방법으로 추출된 건물 정보를 비교 분석하였다. 그 결과는 제안된 방법이 보다 높은 성공률로 비교적정확한 건물 정보를 추출할 수 있음을 보여준다.

KCI등재

6최대 부피 Simplex 기반의 Isomap을 위한 랜드마크 추출

저자 : 지준화 ( Jun Hwa Chi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 509-516 (8 pages)

다운로드

(기관인증 필요)

초록보기

초분광 영상에 내재된 비선형 현상을 다루기 위해서는 과거에 주로 사용되었던 선형 피처 추출 방법은 적합하지 않았다. 따라서 최근 Manifold learning이라 불리우는 비선형 피처 추출 방법이 초분광 원격탐사 분야를 비롯 여러 분야에서 관심이 증가되고 있다. Manifold learning 방법 중 널리 이용되는 Isomap 은 분류와 분광 혼합 분석 등의 분야에서 좋은 결과를 보여주지만, 지나치게 복잡하고 높은 계산량은, 특히원격탐사 자료와 같이 자료의 크기가 큰 경우 문제가 된다. 따라서 자료의 일부분을 이용하는 랜드마크 기법이 해결책으로 제안 되었다. 본 연구에서는 좀 더 통제가 가능한 랜드마크 추출을 위해 자료를 구성하는 최대 부피를 지닌 Simplex를 이용하여 랜드마크를 선택하는 방법을 제안한다. 초분광 영상을 이용하여 랜드마크의 개수, 선택 방법에 따른 분류 정확도와 편차, 그리고 처리 시간을 비교하였고, 그 결과 제안된 랜드마크 선택 기법은 분류 정확도, 처리시간 모두에서 효율적인 결과를 보여주었다.

KCI등재

7시계열 MODIS 영상자료를 이용한 산림의 연간 탄소 흡수량 지도 작성

저자 : 차수영 ( Su Young Cha ) , 피웅환 ( Ung Hwan Pi ) , 박종화 ( Chong Hwa Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 517-525 (9 pages)

다운로드

(기관인증 필요)

초록보기

매일 단위로 수신되는 MODIS 인공위성자료를 이용하여 계산한 시계열 식생지수 자료는 1년 주기의 생물계절 특성을 나타내는 복잡한 파형으로 표현될 수 있다. 이러한 복잡한 파형도 단순한 파형의 합성으로 이루어지는데 이산 퓨리에 변환 분석 기법은 이들을 각각의 하모닉들로 추출해 내어 다양한 주기별로 생육을 달리하는 식생의 특성을 설명할 수 있다. 특히 이산 퓨리에 분석을 통해 도출된 시계열 식생지수 자료의 1차 하모닉 값은 1년 동안 변화하는 총 잎의 생장량을 나타내는 것으로써 나무의 상대성장회귀식 추정에 의해 식생이 1년 동안 탄소를 흡수한 양을 나타내는 지상부 바이오매스양을 설명한다. 따라서 1차 하모닉 값의 변화량은 1년 동안 식생이 탄소를 흡수하는 양을 나타낸다고 할 수 있는데, 시계열 MODIS 자료에서 추출된 6220여개의 표본들의 1차 하모닉 10년 평균값과 산림청의 입목 축적량 데이터를 통해 추정된 연간 단위면적당 이산화탄소 흡수량을 이용하여 수종별 비례상수를 도출할 수 있었다. 남한 산림지역에 한하여 총이산화탄소 흡수량은 2000년 이후 10년 평균 약 5천6백만톤으로 계산되었고 이것은 발표된 남한 산림의 연간 이산화탄소 흡수량에 근접하였다. 본 연구에서 제시한 방법은 보편적 비례상수를 이용하여 식생의 연간탄소 흡수량을 추정함으로써 시계열 위성영상 자료를 이용하여 매년 변화하는 산림의 이산화탄소 흡수량 지도를 반복하여 정량적으로 제작할 수 있는 환경공간정보를 제공한다.

KCI등재

8AISA 초분광 영상에 대한 Endmember 추출 알고리즘의 적용성 분석

저자 : 송아람 ( Ah Ram Song ) , 장안진 ( An Jin Chang ) , 김용일 ( Yong Il Kim ) , 최재완 ( Jae Wan Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 527-535 (9 pages)

다운로드

(기관인증 필요)

초록보기

분광혼합분석을 효과적으로 수행하기 위한 정확한 endmember의 추출은 반드시 선행되어야할 조건이며, 이를 위한 다양한 endmember 추출 알고리즘들이 개발되었다. 이러한 endmember 추출 알고리즘의 개발 및 적용성을 평가하기 위한 기존의 연구는 대부분 모의 초분광 영상 또는 AVIRIS 영상을 대상으로 진행되었다. 그러나 이러한 영상 자료는 실제 국내에서 획득되고 활용할 수 있는 초분광 영상과 차이를 보일수 있다. 따라서 본 연구에서는 국내에서 취득된 AISA 초분광 영상에 대하여 대표적인 endmember추출 알고리즘을 사용하고, 그 적용성을 평가하였다. 물질의 종류 및 크기에 따른 차이를 분석하기 위하여 인공적으로 설계한 테스트베드를 구축하고, AISA 초분광 영상을 취득하여 실험 자료로 이용하였다. 실험결과, 테스트베드 내 물질과 초기 입력값에 따라 알고리즘별로endmember 추출결과가 다르게 나타났다. 따라서 효과적인 endmember 추출 알고리즘을 적용하기 위해서는 영상을 구성하는 테스트베드 내 물질의 특성 및 최적의 endmember의 개수를 고려해야 할 것이다.

KCI등재

9KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류

저자 : 김상일 ( Sang Il Kim ) , 김현철 ( Hyun Cheol Kim ) , 신정일 ( Jung Il Shin ) , 홍순규 ( Soon Gu Hong )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 537-544 (8 pages)

다운로드

(기관인증 필요)

초록보기

남극 세종 과학 기지가 위치하고 있는 바톤반도는 눈과 식생이 주를 이루고 있고, 기후변화와 같은 환경변화에 민감하게 반응한다. 극지역의 지표 모니터링은 기후변화 이해를 위해 중요하다. 그러나 극 지역은 접근성 및 공간규모로 인해 지속적으로 모니터링 하기에 어려움이 있다. 위성영상은 지속적으로 동일지역을 모니터링 할 수 있다는 장점과 함께 다중분광영역을 이용하여 지표의 상태를 파악하는데 효율적이다. 따라서 본 연구에서는 바톤반도의 지표의 상태를 지속적으로 모니터링하기 위한 기초자료로 KOMPSAT-2다중 분광 위성영상을 이용하여 토지피복분류를 수행하였고, 나아가 분류된 토지피복 중 식생 종의 분포를 파악하였다. 다중분광영상인 KOMPSAT-2 위성영상과 현장관측자료를 이용하여 계층적 분류를 수행하였고 정확도를 평가하였다. 전반적으로 식생지역과 비식생 지역이 명확하게 분류되었으나 식생 종 분류에는 낮은 정확도를 보였다.

KCI등재

10GPS를 이용한 미국 알래스카 어거스틴 화산의 지표변위 감시 -2006년 분화를 중심으로-

저자 : 김수경 ( Su Kyung Kim ) , 황의홍 ( Eui Hong Hwang ) , 김영화 ( Young Hwa Kim ) , 이창욱 ( Chang Wook Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 29권 5호 발행 연도 : 2013 페이지 : pp. 545-554 (10 pages)

다운로드

(기관인증 필요)

초록보기

미국 알래스카의 알류산열도에 위치하는 어거스틴 화산은 인근 지역에 위치하는 많은 화산들 중 가장 움직임이 활발한 화산중 하나로, 가장 최근에 발생한 2006년 분화 당시 1월 11일부터 28일까지 총 14번의 분출을 하였으며, 최종적으로 화산폭발지수 3으로 기록되었다. 본 연구에서는 어거스틴에 설치되어 상시운영 중인 12개 GPS 관측소의 2005년부터 2011년까지 관측데이터를 이용하여 2006년 분화 전·후 지표변위 양상을 확인하고 다각도의 분석을 시도하였다. 모든 자료처리는 Bernese GPS Software V5.0를 이용하여 진행하였으며, 어거스틴 화산 인근(약 24.5 km)에 위치한 AC59 관측소를 기지점으로 하는 정밀 기선해석이 수행되었다. 그 결과 분화가 발생하기 약 4개월 전부터 분화구 주변에서 평균 9.7 cm/yr 속도로 지표가 부풀어 오르는 양상이 뚜렷하게 나타났으며, 분화 발생 이후 -9.2 cm/yr의 급격한 침하현상이 확인되었다. 화산활동이 안정기에 접어든 이후에는 화산의 북쪽 사면에 설치된 일부 관측소에서 분화 당시 흘러내린 화산쇄설물의 다짐작용에 의한 침하 현상이 확인되었다. 이러한 결과는 GPS를 이용하여 관측한 지표의 변화가 화산활동을 감시하고 예측하는데 유용한 자료로 사용될 수 있음을 시사한다.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기