논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> 차분 간섭도로부터 지표변위의 시계열 관측을 위한 개선된 Small Baseline Subset (SBAS) 알고리즘

KCI등재

차분 간섭도로부터 지표변위의 시계열 관측을 위한 개선된 Small Baseline Subset (SBAS) 알고리즘

Improvement of Small Baseline Subset (SBAS) Algorithm for Measuring Time-series Surface Deformations from Differential SAR Interferograms

정형섭 ( Hyung Sup Jung ) , 이창욱 ( Chang Wook Lee ) , 박정원 ( Jung Won Park ) , 김기동 ( Ki Dong Kim ) , 원중선 ( Joong Sun Won )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 24권2호
  • : 연속간행물
  • : 2008년 04월
  • : 165-177(13pages)
대한원격탐사학회지

DOI


목차


					

키워드 보기


초록 보기

최근 spatial decorrelation을 극복하기 위하여 비교적 짧은 기선(baseline)을 지니는 여러 시기의 차분간섭도(differential interferogram)로부터 시계열 지표변위(time-series surface deformation)를 관측할 수 있는 small baseline subset(SBAS) 알고리즘이 개발되었다. 이 SBAS 알고리즘은 singluar value decomposition(SVD)을 이용하여 시간별로 완벽하게 연결되지 않는 차분간섭도로부터 시계열 지표변위를 관측하였을 뿐 아니라 공간적으로 저주파 필터와 시간적으로 고주파 필터를 이용하여 대기효과를 보정하였다. 그러나 이 알고리즘은 초기 관측시 시계열 지표변위를 선형으로 가정하였기 때문에 각 차분간섭도의 phase unwrapping 오차를 정확하게 보정하기 어려웠을 뿐 아니라 시계열의 지표변위에 존재하는 노이즈 성분을 완화시키지 못했다. 이와 같은 단점을 보완하기 위하여 이 연구에서는 기존의 SBAS 알고리즘을 개선하였다. 이 개선된 SBAS 알고리즘은 각 차분간섭도의 phase unwrapping 오차를 최소화하기 위하여 반복적으로 시계열 지표면 변위를 개선하였고, 시계열 지표변위의 노이즈를 제거하기 위하여 유한차분 근사법(finite difference approximation)을 이용하였다. 서로 다른 지역의 26개의 ERS-1/2자료와 21개의 RADARSAT-1 fine beam (F5) 자료를 이용하여 개선된 SBAS 알고리즘을 실험하고 분석하였다. ERS-1/2자료에서는 LOS(line-of-sight) 지표변위가 약 13년 동안 최대 -40cm가 관측되었고, RADARSAT-1 fine beam 자료에서는 약 2년 동안 최대 -3cm의 LOS 지표변위가 관측되었다.
Small baseline subset (SBAS) algorithm has been recently developed using an appropriate combination of differential interferograms, which are characterized by a small baseline in order to minimize the spatial decorrelation. This algorithm uses the singular value decomposition (SVD) to measure the time-series surface deformation from the differential interferograms which are not temporally connected. And it mitigates the atmospheric effect in the time-series surface deformation by using spatially low-pass and temporally high-pass filter. Nevertheless, it is not easy to correct the phase unwrapping error of each interferogram and to mitigate the time-varying noise component of the surface deformation from this algorithm due to the assumption of the linear surface deformation in the beginning of the observation. In this paper, we present an improved SBAS technique to complement these problems. Our improved SBAS algorithm uses an iterative approach to minimize the phase unwrapping error of each differential interferogram. This algorithm also uses finite difference method to suppress the time-varying noise component of the surface deformation. We tested our improved SBAS algorithm and evaluated its performance using 26 images of ERS-1/2 data and 21 images of RADARSAT-1 fine beam (F5) data at each different locations. Maximum deformation amount of 40cm in the radar line of sight (LOS) was estimated from ERS-1/2 datasets during about 13 years, whereas 3cm deformation was estimated from RADARSAT-1 ones during about two years.

UCI(KEPA)

I410-ECN-0102-2012-560-000215234

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1757


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권2호(2022년 04월) 수록논문
최근 권호 논문
| | | |

KCI등재

1Sentinel-1 SAR 시계열 영상을 이용한 캐나다 앨버타 오일샌드 지역의 지표변위 분석

저자 : 김태욱 ( Taewook Kim ) , 한향선 ( Hyangsun Han )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 2호 발행 연도 : 2022 페이지 : pp. 139-151 (13 pages)

다운로드

(기관인증 필요)

초록보기

오일샌드 채굴에 널리 이용되고 있는 증기 주입식 중력 배수(Steam-Assisted Gravity Drainage, SAGD) 공법은 지표의 변형을 야기하며, 이는 오일샌드 플랜트의 안정성에 영향을 미칠 뿐만 아니라 다양한 지질 재해의 원인이 되므로 지속적인 모니터링이 필요하다. 이 연구에서는 캐나다 앨버타의 Athabasca 오일샌드 지역에 대해 2016년부터 2021년까지 획득된 Sentinel-1 시계열 영상레이더(synthetic aperture radar, SAR) 자료에 고정산란체 간섭기법(Permanent Scatterer Interferometric SAR, PSInSAR)을 적용하여 SAGD 운용에 의한 지표변위를 관측하였다. 그리고 SAGD의 건설 및 확장을 Landsat-7/8 시계열 영상으로부터 파악하고, 이를 통해 SAGD의 원유 생산성에 따른 지표변위의 특성을 분석하였다. Athabasca 오일샌드 지역의 SAGD 및 그 주변에서는 레이더 관측방향으로 0.3-2.5 cm/yr의 지반융기가 관측된 반면, SAGD에서 수 km 이상 떨어져 있고 오일샌드 채굴의 영향이 없는 지역에서는 -0.3--0.6 cm/yr의 침하가 관측되었다. Landsat-7/8 시계열 영상 분석을 통해 2012년 이후에 건설되어 높은 생산성을 보이는 SAGD는 증기의 주입으로 인해 1.6 cm/yr 이상의 지반융기를 야기하는 반면에 더 오랜 기간 동안 운용되어 생산성이 상대적으로 낮은 SAGD에서는 증기 주입에도 불구하고 지속적인 원유 회수에 따른 사암의 압축 때문에 연간 수 mm의 매우 작은 융기가 발생함을 추정할 수 있었다. SAGD 및 그 주변을 제외한 대부분의 지역에서 관측된 침하는 동토층의 융해에 의한 점진적 지반침하로 추정되었다. 동토층의 침하를 고려할 때 SAGD 운용에 기인하는 지반의 융기는 관측된 것보다 더 클 것이라고 예상되었다. 이 연구의 결과를 통해 PSInSAR 기법이 극한지 오일샌드 SAGD의 생산성과 안정성 평가에 유용한 수단으로 활용될 수 있음을 확인할 수 있었다.


SAGD (Steam-Assisted Gravity Drainage) method is widely used for oil recovery in oil sands regions. The SAGD operation causes surface displacement, which can affect the stability of oil recovery plants and trigger various geological disasters. Therefore, it is important to monitor the surface displacement due to SAGD in the oil sands region. In this study, the surface displacement due to SAGD operations of the Athabasca oil sands region in Alberta, Canada, was observed by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique to the Sentinel-1 time series SAR data acquired from 2016 to 2021. We also investigated the construction and expansion of SAGD facilities from Landsat-7/8 time series images, from which the characteristics of the surface displacement according to the oil production activity of SAGD were analyzed. Uplift rates of 0.3-2.5 cm/yr in the direction of line of sight were observed over the SAGDs and their vicinity, whereas subsidence rates of -0.3--0.6 cm/yr were observed in areas more than several kilometers away from the SAGDs and not affected by oil recovery activities. Through the analysis of Landsat-7/8 images, we could confirm that the SAGDs operating after 2012 and showing high oil production activity caused uplift rates greater than 1.6 cm/yr due to the subsurface steam injection. Meanwhile, very small uplift rates of several mm per year occurred over SAGDs which have been operated for a longer period of time and show relatively low oil production activity. This was probably due to the compression of reservoir sandstone due to continuous oil recovery. The subsidence observed in areas except for the SAGDs and their vicinity estimated to be a gradual land subsidence caused by melting of the permafrost. Considering the subsidence, it was expected that the uplift due to SAGD operation would be greater than that observed by the PSInSAR. The results of this study confirm that the PSInSAR can be used as an effective means for evaluating productivity and stability of SAGD in the extreme cold regions.

KCI등재

2Sentinel-1 SAR 영상의 수체 탐지 기법을 활용한 저수지 관측 기반 수문학적 가뭄 지수 평가

저자 : 김완엽 ( Wanyub Kim ) , 정재환 ( Jaehwan Jeong ) , 최민하 ( Minha Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 2호 발행 연도 : 2022 페이지 : pp. 153-166 (14 pages)

다운로드

(기관인증 필요)

초록보기

저수량은 가용한 수자원의 양을 가장 직접적으로 나타내는 인자중의 하나이다. 또한 가뭄의 영향을 보다 직관적으로 나타낼 수 있으므로, 가뭄 평가를 위한 연구에서도 다양하게 활용되고 있다. 최근에는 광학영상으로 저수면적을 관측하고, 또 이를 활용한 수문학적 가뭄지수인 RADI가 개발되기도 하였다. 인공위성을 통해 얻을 수 있는 광학영상은 관측주기가 뛰어나 많은 양의 자료를 획득할 수 있으나, 구름 등 기상과 대기환경에 의한 영향에 취약하여 실제 활용에서는 다소 한계가 있다. 이에 본 연구에서는 기상이나, 관측시간대와 상관없이 영상을 획득할 수 있는 SAR 영상을 활용한 가뭄지수 산정 연구를 수행하고자 하였다. Sentinel-1 위성의 SAR 영상을 활용하여 충북 진천군에 위치한 백곡, 초평저수지의 저수면적을 탐지하여, RADI를 산정하여 지역규모 가뭄 모니터링을 수행하였다. RADI는 실측 저수량을 기반으로 한 RSDI와 비교, 검증하였다. RADI는 RSDI와 상관계수 r=0.87, ROC의 밑면적 AUC=0.97로 매우 높은 상관 관계를 보여주었다. 이 결과는 SAR 기반 RADI의 지역규모 수문학적 가뭄 모니터링의 가능성을 보여주며, 추후 가용 SAR 영상의 종류가 늘어나고, 재방문주기가 단축될 것이므로 가뭄 모니터링에 대한 활용성이 증대될 것으로 기대된다.


Water storage is one of the factors that most directly represent the amount of available water resources. Since the effects of drought can be more intuitively expressed, it is also used in various studies for drought evaluation. In a recent study, hydrological drought was evaluated through information on observing reservoirs with optical images. The short observation cycle and diversity of optical satellites provide a lot of data. However, there are some limitations because it is vulnerable to the influence of weather or the atmospheric environment. Therefore, this study attempted to conduct a study on estimating the drought index using Synthetic Aperture Radar (SAR) image with relatively little influence from the observation environment. We produced the waterbody of Baekgok and Chopyeong reservoirs using SAR images of Sentinel-1 satellites and calculated the Reservoir Area Drought Index (RADI), a hydrological drought index. In order to validate the applicability of RADI to drought monitoring, it was compared with Reservoir Storage Drought Index (RSDI) based on measured storage. The two indices showed a very high correlation with the correlation coefficient, r=0.87, Area Under curve, AUC=0.97. These results show the possibility of regional-scale hydrological drought monitoring of SAR-based RADI. As the number of available SAR images increases in the future, it is expected that the utilization of drought monitoring will also increase.

KCI등재

3위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구

저자 : 김현호 ( Hyun-ho Kim ) , 서두천 ( Doochun Seo ) , 정재헌 ( Jaeheon Jung ) , 김용우 ( Yongwoo Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 2호 발행 연도 : 2022 페이지 : pp. 167-177 (11 pages)

다운로드

(기관인증 필요)

초록보기

위성 영상 촬영 후 지상국에 전송된 영상을 이용하여 최종 위성 영상을 획득하기 위해 많은 영상 전/후처리 과정이 수반된다. 전/후처리 과정 중 레벨 1R 영상에서 레벨 1G 영상으로 변환 시 기하 보정은 필수적으로 요구된다. 기하 보정 알고리즘에서는 보간 기법을 필연적으로 사용하게 되며, 보간 기법의 정확도에 따라서 레벨 1G 영상의 품질이 결정된다. 또한, 레벨 프로세서에서 수행되는 보간 알고리즘의 고속화 역시 매우 중요하다. 본 논문에서는 레벨 1R에서 레벨 1G로 변환 시 기하 보정에 필요한 경량화된 심층 컨볼루션 신경망 기반 보간 기법에 대해 제안하였다. 제안한 기법은 위성 영상의 해상도를 2배 향상하며, 빠른 처리 속도를 위해 경량화된 심층 컨볼루션 신경망으로 딥러닝 네트워크를 구성하였다. 또한, panchromatic (PAN) 밴드 정보를 활용하여 multispectral (MS) 밴드의 영상 품질 개선이 가능한 피처 맵 융합 방법을 제안하였다. 제안된 보간 기술을 통해 획득한 영상은 기존의 딥러닝 기반 보간 기법에 비해 정량적인 peak signal-to-noise ratio (PSNR) 지표에서 PAN 영상은 약 0.4 dB, MS 영상은 약 4.9 dB 개선된 결과를 보여주었으며, PAN 영상 크기 기준 36,500×36,500 입력 영상의 해상도를 2배 향상된 영상 획득 시 기존 딥러닝 기반 보간 기법 대비 처리 속도가 약 1.6배 향상됨을 확인하였다.


In order to obtain satellite image products using the image transmitted to the ground station after capturing the satellite images, many image pre/post-processing steps are involved. During the pre/post-processing, when converting from level 1R images to level 1G images, geometric correction is essential. An interpolation method necessary for geometric correction is inevitably used, and the quality of the level 1G images is determined according to the accuracy of the interpolation method. Also, it is crucial to speed up the interpolation algorithm by the level processor. In this paper, we proposed a lightweight CNN-based interpolation method required for geometric correction when converting from level 1R to level 1G. The proposed method doubles the resolution of satellite images and constructs a deep learning network with a lightweight deep convolutional neural network for fast processing speed. In addition, a feature map fusion method capable of improving the image quality of multispectral (MS) bands using panchromatic (PAN) band information was proposed. The images obtained through the proposed interpolation method improved by about 0.4 dB for the PAN image and about 4.9 dB for the MS image in the quantitative peak signal-to-noise ratio (PSNR) index compared to the existing deep learning-based interpolation methods. In addition, it was confirmed that the time required to acquire an image that is twice the resolution of the 36,500×36,500 input image based on the PAN image size is improved by about 1.6 times compared to the existing deep learning-based interpolation method.

KCI등재

4GK2A AMI를 이용한 한반도 식생건강지수 산출

저자 : 이수진 ( Soo-jin Lee ) , 조재일 ( Jaeil Cho ) , 류재현 ( Jae-hyun Ryu ) , 김나리 ( Nari Kim ) , 김광진 ( Kwangjin Kim ) , 손은하 ( Eunha Sohn ) , 박기홍 ( Ki-hong Park ) , 장재철 ( Jae-cheol Jang ) , 이양원 ( Yangwon Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 2호 발행 연도 : 2022 페이지 : pp. 180-189 (10 pages)

다운로드

(기관인증 필요)

초록보기

지구온난화는 기후변화를 야기하며 전지구적으로 이상기상 현상을 유발하고 있다. 우리나라에서도 폭염, 가뭄과 같은 이상기상 현상이 증가하고 있는 상황이다. 이상기상 감시를 위하여 지표면온도(Land Surface Temperature, LST), 온도상태지수(Temperature Condition Index, TCI), 식생활력지수(Normalized Difference Vegetation Index, NDVI), 식생상태지수(Vegetation Condition Index, VCI), 식생건강지수(Vegetation Health Index, VHI) 등의 위성자료가 활용되고 있다. TCI와 VCI를 이용하여 계산되는 VHI는 온도, 강수와 같은 기상 요인에 의한 식생 스트레스를 나타내며, 기후변화 상황에서 가뭄 평가에 주로 활용되고 있다. TCI, VCI는 날짜 및 장소에 따른 LST, NDVI의 과거 평년치를 참조해서 산출되기 때문에, 아직 2년여의 자료밖에 없는 천리안위성 2A호(GK2A) AMI (Advanced Meteorological Imager) 자료로부터 TCI, VCI, VHI를 산출하는 것은 현재로서는 쉽지 않은 일이다. 본 연구에서는 대안적인 방법으로 VIIRS (Visible Infrared Imaging Radiometer Suite) 센서의 LST, NDVI를 이용하여 GK2A의 VHI 산출 가능성을 모색하였다. GK2A와 VIIRS의 LST, NDVI는 상당히 높은 상관성을 보이기 때문에, GK2A에 존재하지 않는 과거 평년치를 VIIRS 자료로 대체하는 방식을 택하였다. 8일 간격으로 GK2A 격자에 해당하는 LST, NDVI의 최소·최대값 조견표를 구축하여 TCI, VCI, VHI를 산출하였고, 최근 우리나라 이상기상 현상에 대한 해석을 수행하였다. GK2A VHI는 2020년 3월과 6월의 폭염, 4월과 7월의 저온, 8월의 폭우 등으로 인한 식생 스트레스의 변화를 잘 표현하는 것으로 나타났지만, 미국 해양대기청(National Oceanic and Atmospheric Administration, NOAA)의 VHI 산출물은 그렇지 않았다. 본 연구에서 제시한 GK2A VHI는 향후 LST, NDVI의 과거 평년치에 대한 통계적으로 엄밀한 보완을 거친다면 폭염, 가뭄으로 인한 식생 스트레스 감시에 활용될 수 있을 것으로 사료된다.


Global warming causes climate change and increases extreme weather events worldwide, and the occurrence of heatwaves and droughts is also increasing in Korea. For the monitoring of extreme weather, various satellite data such as LST (Land Surface Temperature), TCI (Temperature Condition Index), NDVI (Normalized Difference Vegetation Index), VCI (Vegetation Condition Index), and VHI (Vegetation Health Index) have been used. VHI, the combination of TCI and VCI, represents the vegetation stress affected by meteorological factors like precipitation and temperature and is frequently used to assess droughts under climate change. TCI and VCI require historical reference values for the LST and NDVI for each date and location. So, it is complicated to produce the VHI from the recent satellite GK2A (Geostationary Korea Multi-Purpose Satellite-2A). This study examined the retrieval of VHI using GK2A AMI (Advanced Meteorological Imager) by referencing the historical data from VIIRS (Visible Infrared Imaging Radiometer Suite) NDVI and LST as a proxy data. We found a close relationship between GK2A and VIIRS data needed for the retrieval of VHI. We produced the TCI, VCI, and VHI for GK2A during 2020-2021 at intervals of 8 days and carried out the interpretations of recent extreme weather events in Korea. GK2A VHI could express the changes in vegetation stress in 2020 due to various extreme weather events such as heatwaves (in March and June) and low temperatures (in April and July), and heavy rainfall (in August), while NOAA (National Oceanic and Atmospheric Administration) VHI could not well represent such characteristics. The GK2A VHI presented in this study can be utilized to monitor the vegetation stress due to heatwaves and droughts if the historical reference values of LST and NDVI can be adjusted in a more statistically significant way in the future work.

KCI등재

5GEMS 이산화황 산출 현업 알고리즘에서 오프셋 보정 계수 산정 방법에 대한 영향 조사

저자 : 박정현 ( Jeonghyeon Park ) , 양지원 ( Jiwon Yang ) , 최원이 ( Wonei Choi ) , 김세린 ( Serin Kim ) , 이한림 ( Hanlim Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 2호 발행 연도 : 2022 페이지 : pp. 189-198 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 지난 2020년 2월에 발사된 정지궤도환경위성탑재체(Geostationary Environment Monitoring Spectrometer; GEMS)의 이산화황 산출 현업 알고리즘에서 오프셋 보정 계수 산정 방법이 이산화황 칼럼 농도 산출 결과에 미치는 영향을 확인하였다. GEMS의 현업 이산화황 산출 알고리즘은 차등흡수분광법(Differential Optical Absorption Spectroscopy; DOAS)과 주성분분석방법(Principal component analysis; PCA)이 융합된 하이브리드 알고리즘이다. 하이브리드 알고리즘에서는 차등흡수분광법을 이용하여 스펙트럴 피팅 후 나오는 이산화황 경사층적분농도 값에 나타나는 오존에 의한 흡수 영향을 보정하기 위하여 편차 보정 과정을 필수적으로 거치게 되며, 오프셋 보정 계수를 산정하는 조건에 따라 이산화황 칼럼농도 산출결과가 달라질 수 있기 때문에 적절한 오프셋 보정 계수 값의 적용이 필요하다. 본 연구에서는 구름 화소가 많이 존재하는 날짜와 적게 존재하는 날짜에 대해 오존 보정 계수를 각각 계산하고, 각각의 오존 보정 계수를 GEMS 현업 이산화황 산출 알고리즘에 적용하여 산출한 이산화황 칼럼농도의 비교를 수행하였다. 구름 화소가 많이 존재하는 날의 GEMS 복사휘도 자료를 이용하여 계산된 오존 보정 계수를 사용한 경우, GEMS 관측 영역의 가장자리에 해당하는 인도 부근에서의 이산화황 칼럼농도의 표준편차가 1.27 DU, 한반도 부근에서 0.58 DU, 주변에 구름 화소가 많았던 홍콩 부근에서 0.77 DU로 나타났다. 한편, 구름 화소가 적은 날의 GEMS 자료를 이용하여 계산된 오존 보정 계수를 사용하였을 경우의 이산화황 칼럼농도의 표준편차는 인도주변에서 0.72 DU, 한반도 주변에서 0.38 DU, 홍콩 부근에서 0.44 DU로 다소 감소하였음을 확인하였으며, 구름 화소가 많은 날의 오존 보정 계수를 사용하여 이산화황을 산출한 경우 대비 비교적 안정적인 산출이 이루어졌음을 확인하였다. 이에 따라, GEMS 이산화황 산출 알고리즘의 불확실성 최소화 및 안정적인 산출을 위해서 적절한 조건에서의 오존 보정 계수 산정이 이루어져야 할 필요가 있다.


In this present study, we investigated the effect of the offset correction factor calculation method on the sulfur dioxide (SO2) column density in the SO2 retrieval algorithm of the Geostationary Environment Monitoring Spectrometer (GEMS) launched in February 2020. The GEMS operational SO2 retrieval algorithm is the Differential Optical Absorption Spectroscopy (DOAS) - Principal Component Analysis (PCA) Hybrid algorithm. In the GEMS Hybrid algorithm, the offset correction process is essential to correct the absorption effect of ozone appearing in the SO2 slant column density (SCD) obtained after spectral fitting using DOAS. Since the SO2 column density may depend on the conditions for calculating the offset correction factor, it is necessary to apply an appropriate offset correction value. In this present study, the offset correction values were calculated for days with many cloud pixels and few cloud pixels, respectively. And a comparison of the SO2 column density retrieved by applying each offset correction factor to the GEMS operational SO2 retrieval algorithm was performed. When the offset correction value was calculated using radiance data of GEMS on a day with many cloud pixels was used, the standard deviation of the SO2 column density around India and the Korean Peninsula, which are the edges of the GEMS observation area, was 1.27 DU, and 0.58 DU, respectively. And around Hong Kong, where there were many cloud pixels, the SO2 standard deviation was 0.77 DU. On the other hand, when the offset correction value calculated using the GEMS data on the day with few cloud pixels was used, the standard deviation of the SO2 column density slightly decreased around India (0.72 DU), Korean Peninsula (0.38 DU), and Hong Kong (0.44 DU). We found that the SO2 retrieval was relatively stable compared to the SO2 retrieval case using the offset correction value on the day with many cloud pixels. Accordingly, to minimize the uncertainty of the GEMS SO2 retrieval algorithm and to obtain a stable retrieval, it is necessary to calculate the offset correction factor under appropriate conditions.

KCI등재

6작물 분류를 위한 딥러닝 기반 비지도 도메인 적응 모델 비교

저자 : 곽근호 ( Geun-ho Kwak ) , 박노욱 ( No-wook Park )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 2호 발행 연도 : 2022 페이지 : pp. 199-213 (15 pages)

다운로드

(기관인증 필요)

초록보기

비지도 도메인 적응은 연단위 작물 분류를 위해 매년 반복적으로 양질의 훈련자료를 수집해야 하는 비실용적인 문제를 해결할 수 있다. 이 연구에서는 작물 분류를 위한 딥러닝 기반 비지도 도메인 적응 모델의 적용성을 평가하였다. 우리나라 마늘, 양파 주산지인 합천군과 창녕군을 대상으로 무인기 영상을 이용한 작물 분류 실험을 통해 deep adaptation network (DAN), deep reconstruction-classification network, domain adversarial neural network (DANN)의 3개의 비지도 도메인 적응 모델을 정량적으로 비교하였다. 비지도 도메인 적응 모델의 분류 성능을 평가하기 위해 소스 베이스라인 및 대상 베이스라인 모델로 convolutional neural networks (CNNs)을 추가로 적용하였다. 3개의 비지도 도메인 적응 모델은 소스 베이스라인 CNN보다 우수한 성능을 보였으나, 소스 도메인 영상과 대상 도메인 영상의 자료 분포 간 불일치 정도에 따라 서로 다른 분류 성능을 보였다. DAN의 분류 성능은 두 도메인 영상 간 불일치가 작을 때 다른 두 모델에 비해 분류 성능이 높은 반면에 DANN은 두 도메인 영상 간 불일치가 클 때 가장 우수한 분류 성능을 보였다. 따라서 신뢰할 수 있는 분류 결과를 생성하기 위해 두 도메인 영상의 분포가 일치하는 정도를 고려해서 최상의 비지도 도메인 적응 모델을 선택해야 한다.


The unsupervised domain adaptation can solve the impractical issue of repeatedly collecting high-quality training data every year for annual crop classification. This study evaluates the applicability of deep learning-based unsupervised domain adaptation models for crop classification. Three unsupervised domain adaptation models including a deep adaptation network (DAN), a deep reconstructionclassification network, and a domain adversarial neural network (DANN) are quantitatively compared via a crop classification experiment using unmanned aerial vehicle images in Hapcheon-gun and Changnyeong-gun, the major garlic and onion cultivation areas in Korea. As source baseline and target baseline models, convolutional neural networks (CNNs) are additionally applied to evaluate the classification performance of the unsupervised domain adaptation models. The three unsupervised domain adaptation models outperformed the source baseline CNN, but the different classification performances were observed depending on the degree of inconsistency between data distributions in source and target images. The classification accuracy of DAN was higher than that of the other two models when the inconsistency between source and target images was low, whereas DANN has the best classification performance when the inconsistency between source and target images was high. Therefore, the extent to which data distributions of the source and target images match should be considered to select the best unsupervised domain adaptation model to generate reliable classification results.

KCI등재

7Pandora 원시자료로부터 차등흡수분광법을 이용하여 이산화질소 칼럼 농도 산출 시 파장 구간 및 흡수단면적에 따른 산출 정확도 평가

저자 : 김세린 ( Serin Kim ) , 김대원 ( Daewon Kim ) , 이한림 ( Hanlim Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 2호 발행 연도 : 2022 페이지 : pp. 215-222 (8 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 pandora 직달광 원시자료로부터 차등흡수분광법(DOAS, Differential Optical Absorption Spectroscopy)을 이용하여 이산화질소 연직칼럼농도(VCD, Vertical column density) 산출 시 파장구간과 흡수단 면적이 미치는 영향을 비교 분석하였다. GEMS Map of the Air Pollution (GMAP) 2020 캠페인 기간 동안 서산에서 Pandora 장비로 관측된 자료를 사용하였으며, 차등흡수분광법을 이용하여 CINDI-2 캠페인과 PGN의 산출 방법에 따라 4가지 조건으로 이산화질소 연직칼럼농도를 산출하였다. 4가지 조건으로 산출된 이산화질소 평균 연직칼럼농도는 1.22×1016~1.38×1016 molec. cm-2으로, 각 조건 간 최대 0.16×1016 molec. cm-2의 차이를 보였다. 피팅 에러는 평균 3.19~9.59%로 모든 조건에서 10% 이내였으며, RMS는 5.11×10-3~7.16×10-3 molec. cm-2으로 나타났다. 4가지 방법으로 산출된 이산화질소 연직칼럼농도와 Pandonia Global Network (PGN)에서 제공하는 이산화질소 연직칼럼농도와 기울기는 0.98~1.09이었으며, 0.96~0.98의 상관관계를 보여주었다.


In this study, the effect of wavelength range and absorption cross-section used to retrieve nitrogen dioxide (NO2) vertical column density (VCD) from Pandora was analyzed using Differential Optical Absorption Spectroscopy (DOAS). During the GEMS Map of the Air Pollution (GMAP) 2020 campaign, data from direct sunlight observation with Pandora instrument in Seosan was used, and NO2 VCD was retrieved under four conditions. The average NO2 VCD under the four conditions ranged from 1.22×1016~1.38×1016 molec. cm-2, with a maximum difference of 0.16×1016 molec. cm-2 between each condition. The fitting error averaged 3.19~9.59%, showing an error within 10% in all cases, and the RMS was 5.11×10-3~7.16×10-3 molec. cm-2. The retrieved NO2 VCD using 4 conditions shows a slope in the range of 0.98 to 1.09 and correlation of 0.96 to 0.98 in comparison with Pandonia Global Network (PGN).

KCI등재

8정오표(Erratum) : 모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시

저자 : 강유진 ( Yoojin Kang ) , 조동진 ( Dongjin Cho ) , 한대현 ( Daehyeon Han ) , 임정호 ( Jungho Im ) , 임중빈 ( Joongbin Lim ) , 오금희 ( Kum-hui Oh ) , 권언혜 ( Eonhye Kwon )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 2호 발행 연도 : 2022 페이지 : pp. 223-223 (1 pages)

다운로드

(기관인증 필요)

키워드 보기
초록보기
1
권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1SAR 영상의 Azimuth 차분을 이용한 움직이는 물체의 속도측정방법

저자 : 박정원 ( Jeong Won Park ) , 정형섭 ( Hyung Sup Jung ) , 원중선 ( Joong Sun Won )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 91-98 (8 pages)

다운로드

(기관인증 필요)

초록보기

SAR에서 마이크로파의 진행방향으로의 속도성분을 가지고 움직이는 물체는 영상에서 azimuth 방향으로 이동된 위치에 상이 맺힌다는 현상은 이미 잘 알려져 있다. 대부분의 속도측정 알고리즘들은 실제물체의 위치와 상이 맺힌 위치 사이의 거리를 측정함으로써 속도를 유추하였다. 그러나 움직이는 물체의 실제의 위치를 나타내는 지시자인 도로나 배의 물결모양은 일반적으로 SAR 영상에서의 식별도가 높지 않기 때문에 이러한 방법은 영상취득시의 조건이나 물체의 움직임 정도에 따라 적용이 제한적이다. 이에 본 연구에서는 SAR 원시자료 처리단계의 중간 산물인 range-compressed 영상의 azimuth 차분신호로부터 물체의 속도를 측정하는 새로운 방법을 제안한다. 이 방법은 움직이는 물체에 의한 도플러 중심주파수의 변이가 azimuth 차분신호에서의 위상변화를 일으킨다는 점에 기초한다. 일반적으로 SAR에서 감지하는 지표물의 위상은 SAR의 기하에 의하여 발생하는 도플러 변화율에 따라서 선형적으로 변한다. 이 선형변화위상과 몇 가지 상수 값을 갖는 위상들을 제거하고 남은 신호는 물체의 움직임과 직접적인 관련이 있으므로, 이로부터 속도를 구해낼 수 있다. 이 방법을 실제 ENVISAT ASAR영상을 이용하여 배의 속도를 구하는 데에 적용해 보았으며, 그 결과는 목표물의 위치에 따라 다른 양상을 보였다. 해상에 단독적으로 존재하는 배에 적용하였을 때는 0.1m/s 정도의 차이로 기존의 속도측정 알고리즘의 결과와 잘 일치하였으나, 육지에 인접한 연안의 배는 선호의 교란에 의해서 1m/s 이상의 오차를 보였다.

KCI등재

2실제 클러터 배경에서 SAR 영상 임펄스 응답 특성 분석

저자 : 정철호 ( Chul Ho Jung ) , 정재훈 ( Jae Hoon Jung ) , 오태봉 ( Tae Bong Oh ) , 곽영길 ( Young Kil Kwag )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 99-106 (8 pages)

다운로드

(기관인증 필요)

초록보기

영상 레이다(SAR)는 주야간, 일조량에 관계없이 전천후로 영상획득이 가능하여 군사용으로는 물론 과학 민수용으로 광범위하게 활용된다. SAR 시스템에서는 고도, 운용 주파수, PRF 등의 다양한 시스템 설계 파라미터로부터 생성된 임펄스 응답 함수(impulse response function)를 분석하여 공간해상도, PSLR, ISLR 등 영상품질 성능 파라미터의 추정이 가능하다. 그러나 모델링된 임펄스 응답 특성은 주변 클러터 환경이 고려되지 않은 이상적인 경우이므로 실제 주변 클러터 환경을 고려한 SAR 영상품질 분석 기법이 필요하다. 본 논문에서는 먼저 주요 SAR 시스템 파라미터를 기반으로 SAR 점표적 원시 데이터를 생성하고, 거리-도플러 알고리듬(range-Doppler algorithm)을 이용하여 임펄스 응답 데이터를 형성한다. 그리고 실제 SAR 영상의 일부분을 추출하여 주변 배경 클러터 환경 데이터를 형성한 후, 임펄스 응답 데이터를 삽입한다. 형성된 응답 데이터는 영상품질의 정확도를 향상시키고자 확장보간법을 도입하여 분석하고, 이에 대한 효과를 주요 도플러 파라미터인 방위 FM율 오차에 따른 성능분석을 수행함으로써 확인한다.

KCI등재

3도시원격탐사에서 베리오그램을 이용한 최적의 분석범위 구역화

저자 : 류희영 ( Hee Young Yoo ) , 이기원 ( Ki Won Lee ) , 권병두 ( Byung Doo Kwon )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 107-115 (9 pages)

다운로드

(기관인증 필요)

초록보기

최근에 개체의 경계가 분명하게 나타나는 고해상도 위성영상을 분석하는 연구가 활발히 이루어지고 있다. 고해상도 영상을 이용해 도시지역을 세분화하여 연구하려고 할 때 분석의 범위는 임의로 결정되는 경우가 많다. 연구지역에 대한 사전정보가 충분하다면 임의로 결정하는 것이 가능하지만 그렇지 않을 경우 영상만을 이용해 연구 지역의 최적 분석범위를 결정하는 것은 쉽지 않다. 이 연구에서는 실제 위성영상에 적용하기에 앞서 간단한 가상 모델의 베리오그램을 분석하였다. 모델 테스트 결과, 문턱값은 개체들의 밀도에 영향을 주고 개체의 크기와 간격은 상관거리에 영향을 준다. 이 모델 테스트의 결과를 도시지역을 촬영한 실제 위성영상의 베리오그램에 반영하여 분석하고 이론적 베리오그램의 상관거리를 이용해 최적의 분석 단위를 결정하였다. 이 연구는 베리오그램이 연구지역에 대한 사전자료가 없는 경우 효과적으로 기본 분석단위를 결정하는데 도움을 줄 수 있을 것이라는 것을 보여주었다. 또한 베리오그램은 기존의 전통적인 크리깅이나 시뮬레이션뿐만 아니라 도시 영상의 특성을 정의하는 정보로 활용 가능할 것으로 기대된다.

KCI등재

4공간패턴을 이용한 자동 비닐하우스 추출방법

저자 : 이종열 ( Jong Yeol Lee ) , 김병선 ( Byoung Sun Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 117-124 (8 pages)

다운로드

(기관인증 필요)

초록보기

지형지물은 각각의 특징적 요인을 내포하고 있다. 이 특징적 요인들은, 공간해상도에 따라 정도의 차이가 있겠지만, 수집된 위성영상에도 반영된다. 이러한 요인들 중에서는 영상분류에 활용될 경우 영상 분류의 정확도를 높혀 주고, 때로는 이것이 거의 물체인식의 수준까지 기여할 수 있는 것들이 있다. 이 연구에서는 텍스춰 및 지형지물의 배열에 있어서 특징적 현상을 보이는 비닐하우스를 대상으로 spatial auto-corelation 개념을 기반으로 자동적으로 이를 인지하는 방법을 개발하였다. 사용된 알고리즘은 디지타이징과 같은 사람의 직접적인 개입이 없이 자동화된 방법으로 비닐하우스의 특정한 패턴이 반복적으로 나타나는 것을 감지할 수 있도록 개발되었다. 패턴의 인식에 더하여 비닐하우스의 기하학적 모양을 고려하는 방법도 도입하였다. 그럼으로써 비닐하우스의 추출에 단순히 화소 단위의 분석이 아닌 보다 객체지향적인 방법으로 비닐하우스를 추출하도록 하였다. 개발된 방법을 제주지역의 IKONOS에 적용시켜 본 결과, 연구대상지역 내의 비닐하우스가 매우 정확하게 적출되었다.

KCI등재

5프랙탈 차원 및 Continuum Removal 기법을 이용한 Hyperion 영상의 노이즈 밴드 제거

저자 : 장안진 ( An Jin Chang ) , 김용일 ( Yong Il Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 125-131 (7 pages)

다운로드

(기관인증 필요)

초록보기

Hyperion, AVIRIS 등의 초분광 영상은 기존의 다중분광 영상보다 넓은 파장대의 영상을 좁은 폭의 많은 밴드로 취득하기 때문에 다양한 분야의 연구에 이용되고 있다. 하지만 밴드별로 취득하는 파장대가 짧고 밴드수가 많아 계산량이 증가하며, 밴드간의 높은 상관관계 및 노이즈 밴드가 발생하는 한계가 존재한다. 이런 한계로 인해 기존에 알려진 분석기법의 적용결과가 제대로 도출되지 않는 경우도 발생한다. 따라서 초분광 영상을 사용할 경우, 노이즈가 포함된 밴드를 제거한 후 영상분석을 하는 것이 보다 정확하고 효율적이다. 본 연구에서는 초분광 영상(Hyperspectral Image)의 전처리 과정 중 노이즈 밴드 제거에 초점을 맞추었으며, 이를 위해 프랙탈 차원을 이용하였다. 프랙탈 차원 측정방법 중 대표적인 곡면차원 측정 방법인 삼각기둥 표면적 기법을 이용하였다. 각 밴드별 프랙탈 차원을 측정하고, 이를 정규화 하기 위해 Continuum Removal 기법을 적용한 뒤 경향을 살펴보았다. 경험적으로 구한 임계값을 통해 상대적으로 정보량이 적은 35개 밴드를 노이즈 밴드로 판단하여 제거하였다. 실험 영상으로는 EO-1 위성에서 취득되는 Hyperion 초분광 영상을 사용하였다. 실험 결과 프랙탈 차원 및 Continuum Removal 기법을 통해 Hyperion 초분광 영상의 노이즈 밴드를 추출하여 제거할 수 있음을 확인하였다.

KCI등재

6기준점 위치와 미지수 조합에 따른 궤도모델링의 정확도 분석

저자 : 김동욱 ( Dong Wook Kim ) , 김현숙 ( Hyun Suk Kim ) , 김태정 ( Tae Jung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 133-140 (8 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 다양한 기준점 배치와 미지수 조합 모델을 이용하여 궤도모델링의 정확도를 검증하고자 하였다. 실험에 사용된 기준점의 개수는 총 152개로 전체 영상 스트립에 포함되는 지역에 대해 GPS 측량을 통해 획득하였다. 전체 스트립 영상의 길이는 춘천지역에서부터 나주지역까지 약 420km 길이에 해당한다. 궤도모델을 위해 적용된 미지수 조합은 위성의 위치와 속도, 자세를 표현하는 방정식의 계수를 미지수로 선택하여 일곱 가지 방식으로 조합하였다. 실험은 우선 모델점의 배치를 일곱 가지 경우로 결정한 후에 각 경우의 배치에 대해 일정한 개수의 모델점을 선택하였다. 그리고 각 모델점의 배치에 따라 미지수 조합모델을 각각 다르게 적용해 본 후 그 결과를 분석해 보았다. 실험 결과 모델점의 위치에 관계없이 지리적, 시간적, 경제적 효율성을 갖는 최적의 미지수 조합을 찾을 수가 있었다.

KCI등재

7항공 LiDAR 데이터를 이용한 3차원 건물모델링

저자 : 조홍범 ( Hong Beom Cho ) , 조우석 ( Woo Sug Cho ) , 박준구 ( Jun Ku Park ) , 송낙현 ( Nak Hyun Song )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 141-152 (12 pages)

다운로드

(기관인증 필요)

초록보기

건물의 3차원 모델링은 3차원 공간정보를 구축하는데 있어서 매우 중요한 요소이다. 기존의 3차원 건물 모델링은 대부분 항공사진측량기술을 이용하여 수동으로 진행되어 많은 시간과 비용이 소요된다. 이러한 한계를 극복하기 위한 방안으로 최근에는 항공라이다(LiDAR) 데이터를 이용한 건물모델링 방법에 대한 많은 연구가 활발히 진행되고 있다. 항공라이다 데이터를 이용한 대부분의 3차원 건물모델링 연구는 보간과정을 통하여 격자구조로 변환하거나 수치지도 또는 항공영상 등의 이종 데이터간의 융합을 통하여 건물을 모델링하는 방안 등을 제시하였다. 본 논문에서는 점 데이터의 격자구조로의 변환 및 이종 데이터간의 융합 등의 방법을 배제하고 항공라이다 데이터만을 이용한 건물의 자동 모델링 방법을 제안하였다. 건물로 분류된 항공라이다 데이터를 옥트리 분할을 기반으로 3차원 공간상에서 재귀적으로 분할하여 패치(patch)를 구성하고, 동일한 속성을 갖는 패치들을 병합하여 건물의 구성요소를 추출한다. 추출되어진 건물의 구성요소를 대표하는 모델을 생성하여 전체적인 건물의 3차원 모델을 구성한다. 항공라이다 데이터를 이용하여 제안된 방법으로 실험한 결과, 다양한 형태의 건물 모델을 자동으로 구성할 수 있었다.

KCI등재

8효율적인 도로 시설물 유지관리를 위한 모바일 매핑 시스템 활용에 관한 연구

저자 : 김문기 ( Moon Gie Kim ) , 성정곤 ( Jung Gon Sung )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 153-164 (12 pages)

다운로드

(기관인증 필요)

초록보기

사회가 발전함에 따라서 보다 높은 수준의 삶을 추구하고자 하는 욕구가 증대되고 있으며 이에 따라 많은 주요한 시설물이 구축되고 있다. 그 중 도로 및 노변에 존재하는 시설물은 사고예방, 재해방지, 운전자의 편의성 제공 등 다양한 목적으로 사용되므로 적절한 유지관리가 요구된다. 현재 이 시간에도 많은 지역에서 도로 및 노변에 존재하는 시설물 공사가 진행중이거나 유지보수중인 상태에 있다. 도로 시설물 유지관리를 위해서 인력을 이용한 현장조사도면과 관리대장작성의 업무가 수작업에 의존하고 있어 자료의 구축에 많은 시간이 걸리는 실정이다. 본 연구에서는 인력을 이용하여 현장을 조사하는 기존 방법과는 달리 멀티 센서(multi sensor)를 장착한 모바일 매핑 차량 시스템을 한국건설기술연구원에서 개발하였다. 본 연구에서는 연구목적에 적합한 센서의 선정 및 차량 시스템을 설계하였으며, 그에 따른 전체적인 데이터의 처리절차를 설명하였다. 처리된 데이터를 DB화하여 사용자가 쉽게 접근이 용이하게 할 수 있도록 하여 공무원 및 유관기관 담당자가 현장에 갈 필요 없이 찾고자 하는 도로구간의 위치에 해당하는 도로 및 노변 영상과 그에 따른 속성 정보를 확인하여 해당 시설물에 대한 정보를 확인 할 수 있도록 하였다. 본 연구에서 구축된 시스템의 데이터를 사용하여 도로 시설물관리 업무의 효율성이 향상될 수 있을 것으로 판단된다.

KCI등재

9차분 간섭도로부터 지표변위의 시계열 관측을 위한 개선된 Small Baseline Subset (SBAS) 알고리즘

저자 : 정형섭 ( Hyung Sup Jung ) , 이창욱 ( Chang Wook Lee ) , 박정원 ( Jung Won Park ) , 김기동 ( Ki Dong Kim ) , 원중선 ( Joong Sun Won )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 165-177 (13 pages)

다운로드

(기관인증 필요)

초록보기

최근 spatial decorrelation을 극복하기 위하여 비교적 짧은 기선(baseline)을 지니는 여러 시기의 차분간섭도(differential interferogram)로부터 시계열 지표변위(time-series surface deformation)를 관측할 수 있는 small baseline subset(SBAS) 알고리즘이 개발되었다. 이 SBAS 알고리즘은 singluar value decomposition(SVD)을 이용하여 시간별로 완벽하게 연결되지 않는 차분간섭도로부터 시계열 지표변위를 관측하였을 뿐 아니라 공간적으로 저주파 필터와 시간적으로 고주파 필터를 이용하여 대기효과를 보정하였다. 그러나 이 알고리즘은 초기 관측시 시계열 지표변위를 선형으로 가정하였기 때문에 각 차분간섭도의 phase unwrapping 오차를 정확하게 보정하기 어려웠을 뿐 아니라 시계열의 지표변위에 존재하는 노이즈 성분을 완화시키지 못했다. 이와 같은 단점을 보완하기 위하여 이 연구에서는 기존의 SBAS 알고리즘을 개선하였다. 이 개선된 SBAS 알고리즘은 각 차분간섭도의 phase unwrapping 오차를 최소화하기 위하여 반복적으로 시계열 지표면 변위를 개선하였고, 시계열 지표변위의 노이즈를 제거하기 위하여 유한차분 근사법(finite difference approximation)을 이용하였다. 서로 다른 지역의 26개의 ERS-1/2자료와 21개의 RADARSAT-1 fine beam (F5) 자료를 이용하여 개선된 SBAS 알고리즘을 실험하고 분석하였다. ERS-1/2자료에서는 LOS(line-of-sight) 지표변위가 약 13년 동안 최대 -40cm가 관측되었고, RADARSAT-1 fine beam 자료에서는 약 2년 동안 최대 -3cm의 LOS 지표변위가 관측되었다.

KCI등재

103차원 소음지도제작을 위한 도화원도와 수치지도를 이용한 도시공간모델 생성

저자 : 오소정 ( So Jung Oh ) , 이임평 ( Im Pyeong Lee ) , 김성준 ( Seong Joon Kim ) , 최경아 ( Kyoung Ah Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 24권 2호 발행 연도 : 2008 페이지 : pp. 179-188 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 3차원 소음지도 제작에 요구되는 도시공간모델을 생성하고자 한다. 이를 위해 센서데이터를 사용하지 않고 기 구축된 수치지도와 도화원도만을 이용하여 지면 및 건물의 3차원 모델을 생성하는 효율적인 방법을 제시하였다. 지면모델은 수치지도의 표고점과 등고선의 고도값을 격자로 내삽하여 생성한다. 건물모델은 수치지도에서 추출한 건물의 2차원 경계와 도화원도에 취득한 건물의 고도를 융합하여 생성한다. 제안된 방법은 영등포구 전역을 포함하는 수치지도와 서로 다른 시기에 생성된 3 set의 도화원도에 적용하였다. 생성된 도시공간모델은 소음분석 및 분석결과의 3차원 가시화에 성공적으로 활용되었다.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기