논문 상세보기

대한원격탐사학회> 대한원격탐사학회지> ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 -긴밀도와 고도 민감도 분석을 중심으로-

KCI등재

ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 -긴밀도와 고도 민감도 분석을 중심으로-

DEM Generation over Coastal Area using ALOS PALSAR Data -Focus on Coherence and Height Ambiguity-

최정현 ( Jung Hyun Choi ) , 이창욱 ( Chang Wook Lee ) , 원중선 ( Joong Sun Won )
  • : 대한원격탐사학회
  • : 대한원격탐사학회지 23권6호
  • : 연속간행물
  • : 2007년 12월
  • : 559-566(8pages)
대한원격탐사학회지

DOI


목차


					

키워드 보기


초록 보기

레이더 위성간섭기법은 지형의 고도 및 변위를 정밀하게 측정하는데 널리 사용되고 있는 기술이다. 이 중 L 밴드의 경우, C또는 X 밴드의 영상보다 시간간격의 영향이 적기 때문에 긴 기선거리를 가진 간섭쌍도 DEM생성을 위한 충분한 긴밀도를 유지하게 된다. 따라서 L 밴드를 사용할 경우, DEM 정밀도에 영향을 주는 고도 민감도가 높아지게 되므로 연안 지역과 같은 평탄한 지형의 DEM 제작에 매우 효과적이다. 국내 서해안의 경우, 얕은 수심과 큰 조차로 인해 넓은 갯벌이 존재하며 국토 확장의 목적으로 시작된 대규모의 간척 사업에 행해졌다. 따라서 연안지역의 지속적인 관리와 보전을 위하여 정밀한 DEM이 필요하다. 본 연구의 목적은 L밴드 ALOS PALSAR 자료의 위상간섭기법을 통한 서해안 연안지역의 지형고도 정보 획득 및 연안지역 DEM 생성의 가능성을 살펴보는 것이다. 한반도 서해안 시화, 회옹간척지 및 강화 납부 갯벌에서 46일의 기간간격을 지닌 2007/05/22 과 2007/08/22의 간섭쌍과 2007/08/22 과 2007/10/22의 간섭쌍을 이용하여 DEM 을 제작하였다. 각 각의 고도민감도는 2007/05/22 과 2007/08/22 간섭쌍의 경우 73m 이며, 2007/08/22 과 2007/10/22 간섭쌍은 185m의 값을 갖는다. 그러나, 2007/05/22 과 2007/08/22 간섭쌍의 경우 두 자료간의 긴밀도 값이 낮으며(강화도 남쪽 갯벌:0.5-0.6 화옹 시화 간척지:0.6-0.7), 연구지역의 조위차로 인하여 전체적인 강화도 남쪽 갯벌의 고도가 측정되지 않았다. 반면, 2007/08/22 과 2007/10/22 간섭쌍의 경우 2007/05/22 과 2007/08/22 간섭쌍에 비하여 높은 긴밀도값 (강화도 남쪽 갯벌 및 화옹, 시화간척:0.9-1)을 가지며, 전체적인 강화도 남쪽 갯벌의 고도 또한 측정 할 수 있었다. 그러나 간섭쌍간의 짧은 기선거리로 인한 낮은 고도민감도로 인하여 정밀한 DEM을 획득 하지 못하였다. 따라서, 향후 획득한 ALOS PALSAR 자료간의 시간간격 및 기선거리가 충분히 유지된다면 획득 간섭쌍간의 높은 긴밀도와 고도 민감도를 가진 자료를 통하여 한반도 서해안지역의 정밀한 DEM 제작이 가능할 것으로 보인다.
The generation of precise digital elevation model (DEM) is very important in coastal area where time series are especially required. Although a LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise DEM has been made using radar interferometry and waterline methods. One of these methods, spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. We attempted to construct DEM using ALOS PALSAR pairs-One pair is 2007/05/22 and 2007/08/22, another pair is 2007/08/22 and 2007/10/22 with respective perpendicular baseline of 820 m, 312m and respective height sensitivity of 75 m and 185m at southern of Ganghwa tidal fiat, Siwha- and Hwaong-lake over west coastal of Korea peninsula. Ganghwa tidal flat has low coherence between 0.3 and 0.5 of 2007/05/22 and 2007/08/22 pair. However, Siwha-lake and Hwaong-lake areas have a higher coherence value (From 0.7 and 0.9) than Ganghwa tidal area. The reason of difference coherence value is tidal condition between tidal flat area (Ganghwa) and reclaimed zone (Siwha-lake and Hwaong-lake). Therefore, DEM was constructed by ALOS PALSAR pair over Siwha-lake and Hwaong-lake. If the temporal baseline is enough short to maintain the coherent phases and height sensitivity is enough small, we will be able to successfully construct a precise DEM over coastal area. From now on, more ALOS PALSAR data will be needed to construct precise DEM of West Coast of Korea peninsular.

UCI(KEPA)

I410-ECN-0102-2012-600-000360202

간행물정보

  • : 자연과학분야  > 기타(자연과학)
  • : KCI등재
  • :
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • : 학술지
  • : 연속간행물
  • : 1985-2022
  • : 1891


저작권 안내

한국학술정보㈜의 모든 학술 자료는 각 학회 및 기관과 저작권 계약을 통해 제공하고 있습니다.

이에 본 자료를 상업적 이용, 무단 배포 등 불법적으로 이용할 시에는 저작권법 및 관계법령에 따른 책임을 질 수 있습니다.

38권6호(2022년 12월) 수록논문
최근 권호 논문
| | | |

KCI등재

1핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지

저자 : 송아람 ( Ahram Song ) , 이창희 ( Changhui Lee ) , 이진민 ( Jinmin Lee ) , 한유경 ( Youkyung Han )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 991-1005 (15 pages)

다운로드

(기관인증 필요)

초록보기

위성 영상은 핵 활동 탐지와 검증을 위한 효율적인 보조자료로 핵시설과 같이 접근이 어렵고 정보가 제한된 지역에 매우 유용하다. 특히 장비의 이동 또는 시설물의 변화와 같이 핵실험을 준비하는 과정은 시계열 분석을 통해 충분히 식별 가능하다. 본 연구에서는 핵 활동과 관련된 주요 객체의 변화를 탐지하기 위하여, 다시기 영상의 의미론적 분할 결과의 차이를 이용하였다. AIHub에서 제공하는 KOMPSAT 3/3A 영상으로 구성된 객체 판독 데이터셋에서 건물, 도로, 소형 객체의 정보를 추출하여 학습하였으며, U-Net, PSPNet, Attention U-Net에 대하여 주요 파라미터를 변경하며 대상 객체 추출에 적합한 의미론적 분할 모델을 분석하였다. 의미론적 분할 결과의 차영상으로 생성된 결과에 객체 정보를 포함하여 최종 변화 탐지를 수행하였으며, 제안 기법을 임의의 변화를 포함한 시뮬레이션 영상에 적용한 결과, 변화 객체를 효과적으로 추출할 수 있었다. 본 연구에서 제시된 변화 탐지 기법을 적용하기 위해서는, 의미론적 분할의 정확도가 우선적으로 확보되어야 하는 제약이 있으나, 추후 실험 대상 지역에 대한 학습데이터셋이 증가할 수록 적용 가능한 분석 범위가 증가할 것으로 기대된다.


Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

KCI등재

2훈련자료 내 재배지역의 비율에 따른 딥러닝 모델의 성능 평가

저자 : 성선경 ( Seonkyeong Seong ) , 최재완 ( Jaewan Choi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1007-1014 (8 pages)

다운로드

(기관인증 필요)

초록보기

차세대중형위성(Compact Advanced Satellite 500, CAS500)은 식생, 산림, 농업 등의 분야를 포함한 다양한 목적을 위하여 사용될 수 있으며, 다양한 영역에 대한 빠른 위성영상의 취득이 가능할 것으로 기대되고 있다. 차세대중형위성을 통하여 취득된 위성영상을 농업분야에서 활용하기 위해서는 위성영상 기반 작물재배지역추출 기법에 대한 개발이 필요하다. 특히, 최근 들어 딥러닝 분야에 대한 연구가 활발해짐에 따라서, 작물재배지역 추출을 위한 딥러닝 모델의 개발 및 훈련자료 생성에 관한 연구가 필요한 실정이다. 본 연구에서는 PlanetScope 위성영상과 팜맵을 이용하여 합천군 지역의 양파 및 마늘 재배지역을 분류하고자 하였다. 특히, 효과적인 모델의 학습을 위하여 작물재배지역의 비율에 따른 모델 성능을 분석하고자 하였다. 실험에 사용한 딥러닝 모델은 Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet)을 작물재배지역 분류의 목적에 맞도록 재구성하여 활용하였다. 실험결과, 훈련자료 내 작물재배지역의 비율이 딥러닝 모델의 성능에 영향을 미치는 것을 확인하였다.


Compact Advanced Satellite 500 (CAS500) can be used for various purposes, including vegetation, forestry, and agriculture fields. It is expected that it will be possible to acquire satellite images of various areas quickly. In order to use satellite images acquired through CAS500 in the agricultural field, it is necessary to develop a satellite image-based extraction technique for crop-cultivated areas. In particular, as research in the field of deep learning has become active in recent years, research on developing a deep learning model for extracting crop cultivation areas and generating training data is necessary. This manuscript classified the onion and garlic cultivation areas in Hapcheon-gun using PlanetScope satellite images and farm maps. In particular, for effective model learning, the model performance was analyzed according to the proportion of crop-cultivated areas. For the deep learning model used in the experiment, Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet) was reconstructed to fit the purpose of crop cultivation area classification and utilized. As a result of the experiment, the ratio of crop cultivation areas in the training data affected the performance of the deep learning model.

KCI등재

3화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법

저자 : 김재인 ( Jae-in Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1015-1023 (9 pages)

다운로드

(기관인증 필요)

초록보기

착륙선의 진입-하강-착륙 과정에는 많은 환경적 및 기술적 어려움이 수반된다. 이러한 문제들을 해결하기 위한 방안으로, 최근 착륙선에는 지형상대항법 기술이 필수적으로 고려되고 있다. 지형상대항법은 하강하는 착륙선에서 수집되는 Inertial Measurement Unit (IMU) 데이터 및 영상 데이터를 기 구축된 참조 데이터와 비교하여 착륙선의 위치 및 자세를 추정하는 기술이다. 본 논문에서는 화성에서 활용할 지형상대항법 기술을 개발하기 위해 그 핵심 기술 요소로서 하강 데이터셋 생성 및 랜드마크 추출 방법을 제시한다. 제안방법은 화성착륙 시뮬레이션 궤적정보를 이용하여 하강하는 착륙선의 IMU 데이터를 생성하며, 이에 맞추어 고해상도 정사영상지도 및 수치표고모델로부터 ray tracing 기법을 통해 하강영상을 생성한다. 랜드마크 추출은 텍스쳐 정보가 부족한 화성 표면의 특성을 고려하여 영역 기반 추출 방식으로 이루어지며, 정합 정확도와 속도 향상을 위해 탐색영역 축소가 수행된다. 하강영상 생성 방법의 성능분석 결과는 제안방법으로 촬영 기하학적 조건을 만족시키는 영상 생성이 가능함을 보여주었으며, 랜드마크 추출 방법의 성능분석 결과는 제안방법을 통해 수 미터 수준의 위치 추정 정확도를 담보하면서 동시에 특징점 기반 방식만큼의 처리속도 확보가 가능함을 보여주었다.


The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

KCI등재

4무인항공기 영상을 위한 영상 매칭 기반 생성포인트 클라우드의 후처리 방안 연구

저자 : 이수암 ( Sooahm Rhee ) , 김한결 ( Han-gyeol Kim ) , 김태정 ( Taejung Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1025-1034 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 건물의 포인트 클라우드를 추출할 때 발생하는 홀 영역의 보간을 통한 후처리 방안을 제안한다. 스테레오 영상 데이터에서 영상 매칭을 수행할 경우 차폐 및 건물 벽면 등의 영향으로 홀이 발생한다. 이런 영역은 추후 포인트 클라우드를 기반으로 하는 부가 산출물의 생성에 장애 요인이 될 수 있으므로, 이에 대한 효과적인 처리 기법의 적용이 필요하다. 먼저 영상 매칭을 적용하여 생성된 시차맵을 기반으로 초기 포인트 클라우드를 추출한다. 포인트 클라우드를 격자화 시키면 차폐영역 및 건물 벽면의 영향으로 발생하는 홀 영역을 확인할 수 있다. 홀 영역에 삼각망을 생성하고 삼각망 내부 값을 영역의 최소값으로 처리하는 과정을 반복하는 것으로 건물 주변의 지표면과 건물 간에 어색함 없는 보간의 수행이 가능하다. 격자화 된 데이터에서 보간 된 영역에 해당하는 위치정보를 포인트로 추가하여 새로운 포인트 클라우드를 생성한다. 보간과정 중 불필요한 점의 추가를 최소화하기 위해 초기 포인트 클라우드 영역에서 벗어나는 영역으로 보간 된 데이터는 처리하지 않았으며, 보간 된 포인트 클라우드에 적용되는 RGB 밝기값은 매칭에 사용된 스테레오 영상 중 촬영중심과 해당 픽셀이 가장 근접한 영상으로 설정하여 처리하였다. 실험 결과 제안 기법을 통해 대상영역의 포인트 클라우드 생성 후 발생하는 음영 영역이 효과적으로 처리되는 것을 확인할 수 있었다.


In this paper, we propose a post-processing method through interpolation of hole regions that occur when extracting point clouds. When image matching is performed on stereo image data, holes occur due to occlusion and building façade area. This area may become an obstacle to the creation of additional products based on the point cloud in the future, so an effective processing technique is required. First, an initial point cloud is extracted based on the disparity map generated by applying stereo image matching. We transform the point cloud into a grid. Then a hole area is extracted due to occlusion and building façade area. By repeating the process of creating Triangulated Irregular Network (TIN) triangle in the hall area and processing the inner value of the triangle as the minimum height value of the area, it is possible to perform interpolation without awkwardness between the building and the ground surface around the building. A new point cloud is created by adding the location information corresponding to the interpolated area from the grid data as a point. To minimize the addition of unnecessary points during the interpolation process, the interpolated data to an area outside the initial point cloud area was not processed. The RGB brightness value applied to the interpolated point cloud was processed by setting the image with the closest pixel distance to the shooting center among the stereo images used for matching. It was confirmed that the shielded area generated after generating the point cloud of the target area was effectively processed through the proposed technique.

KCI등재

5MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구

저자 : 김예슬 ( Yeseul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1035-1046 (12 pages)

다운로드

(기관인증 필요)

초록보기

이 연구에서는 토지 피복 분류를 위한 다중 해상도 자료 융합의 적용성을 평가하였다. 여기서 다중 해상도 자료 융합 모델로는 spatial time-series geostatistical deconvolution/fusion model (STGDFM)을 적용하였다. 연구 지역은 미국 Iowa 주의 일부 농경 지역으로 선정하였으며, 대상 지역의 규모를 고려해 다중 해상도 자료 융합의 입력 자료로 Moderate Resolution Imaging Spectroradiometer (MODIS) 및 Landsat 영상을 사용하였다. 이를 바탕으로 STGDFM 적용해 Landsat 영상이 결측된 시기에서 가상의 Landsat 영상을 생성하였다. 그리고 획득한 Landsat 영상과 함께 STGDFM의 융합 결과를 입력 자료로 사용해 토지 피복 분류를 수행하였다. 특히 다중 해상도 자료 융합의 적용성 평가를 위해 획득한 Landsat 영상만을 이용한 분류 결과와 Landsat 영상 및 융합 결과를 모두 이용한 분류 결과를 비교 평가하였다. 그 결과, Landsat 영상만을 이용한 분류 결과에서는 대상 지역의 주요 토지 피복인 옥수수와 콩 재배지에서 혼재 양상이 두드러지게 나타났다. 또한 건초 및 곡물 지역과 초지 지역 등 식생 피복 간의 혼재 양상도 큰 것으로 나타났다. 반면 Landsat 영상 및 융합 결과를 이용한 분류 결과에서는 옥수수와 콩 재배지의 혼재 양상과 식생 피복 간의 혼재 양상이 크게 완화되었다. 이러한 영향으로 Landsat 영상 및 융합 결과를 이용한 분류 결과에서 분류 정확도가 약 20%p 향상되었다. 이는 STGDFM을 통해 MODIS 영상이 갖는 시계열 분광 정보를 융합 결과에 반영하면서 Landsat 영상의 결측을 보완할 수 있었고, 이러한 시계열 분광 정보가 분류 과정에 결합되면서 오분류를 크게 줄일 수 있었던 것으로 판단된다. 본 연구 결과를 통해 토지 피복 분류에 다중 해상도 자료 융합이 효과적으로 적용될 수 있음을 확인하였다.


This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

KCI등재

6Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가

저자 : 지준화 ( Junhwa Chi )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1047-1056 (10 pages)

다운로드

(기관인증 필요)

초록보기

지구 온난화의 중요한 지시자인 북극의 바다 얼음인 해빙은 기후 시스템, 선박의 항로 안내, 어업 활동 등에서의 중요성으로 인해 다양한 학문 분야에서 관심을 받고 있다. 최근 자동화와 효율적인 미래 예측에 대한 요구가 커지면서 인공지능을 이용한 새로운 해빙 예측 모델들이 전통적인 수치 및 통계 예측 모델을 대체하기 위해 개발되고 있다. 본 연구에서는 북극 해빙의 전역적, 지역적 특징을 학습할 수 있는 two-stream convolutional long- and short-term memory (TS-ConvLSTM) 인공지능 모델의 북극 해빙 면적이 최저를 보이는 9월에 대해 2001년부터 2021년까지 장기적인 성능 검증을 통해 향후 운용 가능한 시스템으로써의 가능성을 살펴보고자 한다. 장기 자료를 통한 검증 결과 TS-ConvLSTM 모델이 훈련자료의 양이 증가하면서 향상된 예측 성능을 보여주고 있지만, 최근 지구 온난화로 인한 단년생 해빙의 감소로 인해 해빙 농도 5-50% 구간에서는 예측력이 저하되고 있음을 보여주었다. 반면 TS-ConvLSTM에 의해 예측된 해빙 면적과 달리 Sea Ice Prediction Network에 제출된 Sea Ice Outlook (SIO)들의 해빙 면적 중간값의 경우 훈련자료가 늘어나더라도 눈에 띄는 향상을 보이지 않았다. 본 연구를 통해 TS-ConvLSTM 모델의 향후 북극 해빙 예측 시스템의 운용 가능 잠재성을 확인하였으나, 향후 연구에서는 예측이 어려운 자연 환경에서 더욱 안정성 있는 예측 시스템 개발을 위해 더 많은 시공간 변화 패턴을 학습할 수 있는 방안을 고려해야 할 것이다.


Sea ice, frozen sea water, in the Artic is a primary indicator of global warming. Due to its importance to the climate system, shipping-route navigation, and fisheries, Arctic sea ice prediction has gained increased attention in various disciplines. Recent advances in artificial intelligence (AI), motivated by a desire to develop more autonomous and efficient future predictions, have led to the development of new sea ice prediction models as alternatives to conventional numerical and statistical prediction models. This study aims to evaluate the performance of the two-stream convolutional longand short-term memory (TS-ConvLSTM) AI model, which is designed for learning both global and local characteristics of the Arctic sea ice changes, for the minimum September Arctic sea ice from 2001 to 2021, and to show the possibility for an operational prediction system. Although the TSConvLSTM model generally increased the prediction performance as training data increased, predictability for the marginal ice zone, 5-50% concentration, showed a negative trend due to increasing first-year sea ice and warming. Additionally, a comparison of sea ice extent predicted by the TS-ConvLSTM with the median Sea Ice Outlooks (SIOs) submitted to the Sea Ice Prediction Network has been carried out. Unlike the TS-ConvLSTM, the median SIOs did not show notable improvements as time passed (i.e., the amount of training data increased). Although the TSConvLSTM model has shown the potential for the operational sea ice prediction system, learning more spatio-temporal patterns in the difficult-to-predict natural environment for the robust prediction system should be considered in future work.

KCI등재

7가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구

저자 : 이유진 ( Yoo Jin Lee ) , 이수암 ( Sooahm Rhee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1057-1068 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 논문은 모바일 기반의 실시간 영상 측위 기술 개발을 목표로 사용자가 촬영한 사진과 가상의 텍스쳐 영상 간의 매칭 가능성 확인 연구로 특징점 기반의 매칭 알고리즘의 조합 성능을 비교했다. 특징점 기반의 매칭 알고리즘은 특징점(feature)을 추출하는 과정과 추출된 특징점을 설명하는 서술자(descriptor)를 계산하는 과정, 최종적으로 서로 다른 영상에서 추출된 서술자를 매칭하고, 잘못 매칭된 특징점을 제거하는 과정으로 이루어진다. 이때 매칭 알고리즘 조합을 위해, 특징점을 추출하는 과정과 서술자를 계산하는 과정을 각각 같거나 다르게 조합하여 매칭 성능을 비교하였다. 가상 실내 텍스쳐 영상을 위해 V-World 3D 데스크탑을 활용하였다. 현재 V-World 3D 데스크톱에서는 수직 · 수평적 돌출부 및 함몰부와 같은 디테일이 보강되었다. 또한, 실제 영상 텍스쳐가 입혀진 레벨로 구축되어 있어, 이를 활용하여 가상 실내 텍스쳐 데이터를 기준영상으로 구성하고, 동일한 위치에서 직접 촬영하여 실험 데이터셋을 구성하였다. 데이터셋 구축 후, 매칭 알고리즘들로 매칭 성공률과 처리 시간을 측정하였고, 이를 바탕으로 매칭 성능 향상을 위해 매칭 알고리즘 조합을 결정하였다. 본 연구에서는 매칭 기법마다 가진 특장점을 기반으로 매칭 알고리즘을 조합하여 구축한 데이터셋에 적용해 적용가능성을 확인하였고, 추가적으로 회전요소가 고려되었을 때의 성능 비교도 함께 수행하였다. 연구 결과, Scale Invariant Feature Transform (SIFT)의 feature와 descriptor 조합이 가장 매칭 성공률이 좋았지만 처리 소요 시간이 가장 큰 것을 확인할 수 있었고, Features from Accelerated Segment Test (FAST)의 feature와 Oriented FAST and Rotated BRIEF (ORB)의 descriptor 조합의 경우, SIFT-SIFT 조합과 유사한 매칭 성공률을 가지면서 처리 소요시간도 우수하였다. 나아가, FAST-ORB의 경우, 10°의 회전이 데이터셋에 적용되었을 때에도 매칭 성능이 우세함을 확인하였다. 따라서 종합적으로 가상 텍스쳐 영상과 실영상간 매칭을 위해서 FAST-ORB 조합의 매칭 알고리즘이 적합한 것을 확인할 수 있었다.


This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.

KCI등재

8정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구

저자 : 신대근 ( Daegeun Shin ) , 김소명 ( Somyoung Kim ) , 박주선 ( Juseon Bak ) , 백강현 ( Kanghyun Baek ) , 홍성재 ( Sungjae Hong ) , 김재환 ( Jaehwan Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1069-1080 (12 pages)

다운로드

(기관인증 필요)

초록보기

대류권 오존은 전 세계적으로 인간과 생태계에 막대한 피해를 입히는 오염 물질이다. 국지적인 오존 문제는 발생 지역에서 바람에 의해 풍하 측으로 이동함에 따라 지역적, 전 지구적 문제가 되고 있다. 보다 효율적인 오존 모니터링을 위해서 연속적인 일중 관측이 가능한 정지궤도 위성을 이용하려는 시도가 있어왔다. 이 연구에서는 정지궤도 위성에서 관측될 대류권 오존의 연속적인 관측을 이용하여 대류권 오존 이동벡터(Tropospheric Ozone Movement Vector, TOMV) 산출을 세계 최초로 시도했다. 현재 정지궤도 위성을 이용한 대류권오존 산출물이 존재하지 않기 때문에 대기화학모델인 GEOS-Chem에서 산출된 대류권 오존 자료를 이용하였다. 산출된 오존의 이동 속도는 화학모델에 비해 높은 값이 나왔지만 오염의 이동의 방향은 매우 높은 일치성을 보여주었다. 제시된 알고리즘을 이용하면 오존의 유입 플럭스를 오존의 움직이는 속도와 방향을 이용하여 산출할 수도 있다. 이와 같은 결과는 오염물질의 이동분석에 널리 사용되는 역방향 궤적 방법의 대안으로써 오염물질의 모니터링과 예보에 보다 유용하게 사용될 수 있다. 이와 반대로 오존분포의 경계선이 불분명하면 TOMV 산출에 오차를 발생시킬 수 있기 때문에 이동에 대한 잘못된 정보를 줄 수 있는 것이 이 방법의 한계이다. 그럼에도 불구하고 TOMV 방법은 앞으로 활동하게 될 정지궤도 위성을 이용한 오염 모니터링과 예보에 진일보한 방향을 제시해줄 수 있을 것이다.


The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

KCI등재

9GACOS 모델 대기 위상 지연 보정을 활용한 SBAS-InSAR 기술 기반 울산광역시 지반 침하 탐지

저자 : 수레시크리쉬난 ( Suresh Krishnan Palanisamy Vadivel ) , 김덕진 ( Duk-jin Kim ) , 이정훈 ( Jung-hoon Lee ) , 송주영 ( Juyoung Song ) , 김준우 ( Junwoo Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1081-1089 (9 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 시계열 Small Baseline Subset (SBAS)-InSAR 기법을 이용하여 울산시의 지반 침하를 조사하였으며, 79개의 Sentinel-1 SAR 영상과 385개의 간섭도 영상(interferogram)을 사용하여 2015년 5월부터 2021년 12월 울산광역시의 지상 변위(surface displacement)를 추정하였다. 지반 침하율은 북구와 남구 삼산동 2지역에서 연 3.44 cm, 1.68 cm로 계측되었다. 또한 Generic Atmospheric Correction Online Service (GACOS)로 생성한 Zenith Total Delay (ZTD) 지도를 활용하여 unwrapping된 간섭도 위상에서 대기 지연(tropospheric delay)의 영향을 제거할 수 있는 가능성을 평가하였으며, GACOS ZTD 보정 전후의 SBAS-InSAR 지상 변위 측정의 차이가 연 1 mm미만임을 발견하였다.


This study aims to investigate and monitor the ground subsidence in Ulsan city, South Korea using time-series Small Baseline Subset (SBAS)-InSAR analysis. We used 79 Sentinel-1 SAR scenes and 385 interferograms to estimate the ground displacements at Ulsan city from May 2015 and December 2021. Two subsiding regions Buk-gu and Nam-gu Samsan-dong were found with the subsidence rate of 3.44 cm/year and 1.68 cm/year. In addition, we evaluated the possibility of removing the effect of atmospheric (tropospheric delay) phase in unwrapped phase using the Zenith Total Delay (ZTD) maps from Generic Atmospheric Correction Online Service (GACOS). We found that the difference between the SBAS-InSAR ground displacements before and after GACOS ZTD correction is less than 1 mm/year in this study.

KCI등재

10개선된 DeepResUNet과 컨볼루션 블록 어텐션 모듈의 결합을 이용한 의미론적 건물 분할

저자 : 예철수 ( Chul-soo Ye ) , 안영만 ( Young-man Ahn ) , 백태웅 ( Tae-woong Baek ) , 김경태 ( Kyung-tae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 6호 발행 연도 : 2022 페이지 : pp. 1091-1100 (10 pages)

다운로드

(기관인증 필요)

초록보기

딥러닝 기술의 진보와 함께 다양한 국내외 고해상도 원격탐사 영상의 활용이 가능함에 따라 딥러닝 기술과 원격탐사 빅데이터를 활용하여 도심 지역 건물 검출과 변화탐지에 활용하고자 하는 관심이 크게 증가하고 있다. 본 논문에서는 고해상도 원격탐사 영상의 의미론적 건물 분할을 위해서 건물 분할에 우수한 성능을 보이는DeepResUNet 모델을 기본 구조로 하고 잔차 학습 단위를 개선하고 Convolutional Block Attention Module(CBAM)을 결합한 새로운 건물 분할 모델인 CBAM-DRUNet을 제안한다. 제안한 건물 분할 모델은 WHU 데이터셋과 INRIA 데이터셋을 이용한 성능 평가에서 UNet을 비롯하여 ResUNet, DeepResUNet 대비 F1 score, 정확도, 재현율 측면에서 모두 우수한 성능을 보였다.


As deep learning technology advances and various high-resolution remote sensing images are available, interest in using deep learning technology and remote sensing big data to detect buildings and change in urban areas is increasing significantly. In this paper, for semantic building segmentation of high-resolution remote sensing images, we propose a new building segmentation model, Convolutional Block Attention Module (CBAM)-DRUNet that uses the DeepResUNet model, which has excellent performance in building segmentation, as the basic structure, improves the residual learning unit and combines a CBAM with the basic structure. In the performance evaluation using WHU dataset and INRIA dataset, the proposed building segmentation model showed excellent performance in terms of F1 score, accuracy and recall compared to ResUNet and DeepResUNet including UNet.

권호별 보기
같은 권호 다른 논문
| | | | 다운로드

KCI등재

1암석분광반사율 특성을 이용한 납석 광화대 추출

저자 : 지광훈 ( Kwang Hoon Chi ) , 이홍진 ( Hong Jin Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 493-500 (8 pages)

다운로드

(기관인증 필요)

초록보기

일반적으로 분광측정을 수행함에 있어서 측정 대상물, 측정 방법, 측정 조건 등에 따라서 측정 결과가 상이하게 나타난다. 본 연구에서는 광물 및 암석 샘플의 전처리, 센서와 대상물과의 거리에 대한 표준화 방법을 제시하고, 납석의 분광특성 연구를 수행하였다. 광물, 암석 샘플의 크기는 노두의 규모와 상태에 따라서 다양하기 때문에 샘플과 센서간의 거리를 일정하게 유지하는 것이 중요하다. 표준화를 수행하기 전에 동일한 암석(석영반암)에 대해서 자연석, 자갈, 분말 그리고 절단암 등 다양한 샘플을 준비하였다. 샘플의 표면 상태와 그림자의 영향을 최소화하고 정량적인 분석을 위하여 센서와 샘플간의 거리를 30cm로 유지하고 1~2cm 두께의 절단암을 3회 반복 측정 하였다. 제안된 방법을 검증하기 위해서 납석에 대한 사례 연구를 수행하였다. 본 연구결과에 따르면 납석은 1.406nm, 1,868nm, 2.180nm 그리고 2.180nm 파장대역에서 강한 흡수 양상을 보이며, 특히 1.406nm와 2.180nm 파장대역에서 강한 흡수가 일어난다. 이러한 흡수 특징은 Landsat TM 영상의 밴드 7과 ASTER 영상의 밴드 8과 일치한다. 따라서, 이러한 결과를 이용하여 육안으로 구분되지 않은 다른 대상물(나지, 주차장, 채석장 등)과 납석 광산을 구분할 수 있다.

KCI등재

2합성개구레이더용 전방향 반사기의 설계

저자 : 장지성 ( Ge Ba Chang ) , 양찬수 ( Chan Su Yang ) , 오이석 ( Yi Sok Oh )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 501-506 (6 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 합성개구레이더(synthetic aperture radar, SAR) 영상의 보정에 사용되고 있는 반사기(corner reflector, CR)를 이용하여 목표물의 식별과 인식을 위한 기초적인 연구를 실시하였다. 사각형 삼면 전파반사기를 기반으로 전방향(omni-directional) 반사기를 제작하였다. 여기서는 한 변의 길이가 15cm인 4-배열 사각형 삼면 전파반사기를 사용하여 C-밴드(주파수: 5.3 GHz) 의 편파별(VV, HH, VH, HV) RCS(radar cross section)특성을 해석하였다. 전파반사기는 대칭형이므로 방위각 180도 범위에 대해서 레이더 산란단면적 패턴을 측정하였다. VV편파의 경우 방위각에 따른 RCS값의 차이가 8dB정도로 다른 편파보다 전방향 특성이 더 좋은 것으로 확인되었고 방위각이 0˚(단면과 동일 방향)와 45˚(이웃하는 단면들의 중앙) 일 때, 가장 높은 RCS값을 보였다. 또한, 실험에서 얻어진 RCS값을 수치 해석 시뮬레이션과 이론적 계산과 비교를 실시한 결과, 서로 잘 일치하는 것으로 나왔다.

KCI등재

3북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구

저자 : 한향선 ( Hyang Sun Han ) , 이훈열 ( Hoon Yol Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 507-520 (14 pages)

다운로드

(기관인증 필요)

초록보기

인공위성 수동 마이크로파(passive microwave, PM) 센서는 1970년대부터 극지 해빙의 면적비 (sea ice concentration, SIC)와 표면 온도(ice temperature), 적설 두께(snow depth) 등을 관찰하고 있다. 특히 SIC는 기후 및 환경 변화 관찰을 위한 1차 요소로 고려되는 등 다양한 연구 분야에서 중요한 역할을 하기 때문에 PM SIC의 지속적인 검증과 보정이 필요하다. 본 연구에서는 2005년 7-8월 북극해의 가장 자리를 촬영한 KOMPSAT-1 EOC 영상으로부터 SIC를 계산하였고, 이를 NASA Team(NT) 알고리즘으로 계산된 SSM/I SIC와 비교하였다. EOC와 SSM/I NT SIC는 서로 다른 해상도와 관측 시각을 가지며 북극의 여름철 해빙 분포지역의 가장자리에서 해빙의 시공간적인 변화가 크기 때문에, 해빙의 유형을 고려하지 않았을 경우 0.574의 낮은 상관성을 보였다. 해빙의 유형에 따른 SSM/I NT SIC를 검증하기 위하여 EOC 영상으로부터 정착빙, 부빙, 유빙으로 해빙 형태를 분류하였고, 각 유형 별로 EOC와 SSM/I NT SIC를 비교하였다. 정착빙의 면적비는 EOC와 SSM/I NT SIC 사이에서 평균 오차가 0.38%로 매우 유사한 값을 나타냈다. 이는 정착빙의 시공간적인 변화가 작기 때문이며, 표면에 쌓인 눈은 건조한 상태일 것으로 추정되었다. 부빙의 경우 NT 알고리즘에서 면적비가 과소평가되는 빙맥(ice ridge)과 new ice가 많이 관찰되었으며, 이로 인해 SSM/I NT SIC는 EOC보다 평균 19.63% 작은 값을 나타냈다. 유빙 지역에서 SSM/I NT SIC는 EOC보다 평균 20.17% 큰 값을 가진다. 유빙은 부빙의 가장자리와 가까운 지역에 위치하기 때문에 SSM/I의 넓은 IFOV 내에 비교적 높은 SIC를 가지는 부빙이 포함되어 오차를 일으킬 수 있다. 또한 유빙 표면에 쌓인 수분 함량이 높은 눈의 영향으로 SSM/I NT SIC가 과대 측정되었을 것으로 사료된다.

KCI등재

4객체 기반 영상 분류에서 최적 가중치 선정과 정확도 분석 연구

저자 : 이정빈 ( Jung Bin Lee ) , 허준 ( Joon Heo ) , 어양담 ( Yang Dam Eo )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 521-528 (8 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 대상지역에 대한 영상을 다양한 가중치의 조합의 경우를 고려하여 객체 단위로 분할하게 되며 분할된 객체에 대하여 상호관계를 분석하여 수치적으로 표현하였다. 또한 최종적인 객체 기반 영상분류에서 높은 정확도를 확보할 수 있는 가중치의 조합을 산정하였다. 연구에 사용된 영상은 Landsat-7/ETM 영상으로 대상 지역의 면적은 11×14 ㎞이며 밴드 2,3,4의 조합을 사용하였다. 객체 간 계산은 Moran`s I와 객체 내부 분산(Intrasegment Variance)을 이용하였다. 대상지역에 대하여 총 75개의 가중치 조합을 사용하여 75개의 객체 분할 영상을 생성하였다. 객체 분할 영상 중에 최종적인 영상 분류 시 높은 정확도가 예상되는 가중치 조합, 중간 정도 정확도가 예상되는 가중치 조합 그리고 낮은 정도 정확도가 예상되는 가중치 조합을 7개 선택하여 최종적인 객체기반 영상분류를 시행하고 그 정확도를 비교하였다. 정확도의 비교 결과, 가장 높은 정확도가 예상되는 가중치 조합의 객체 분할 영상의 경우 객체 기반 영상 분류 시 85% 이상의 정확도를 나타내었으며 반대로 낮은 경우는 분류 시 50% 정도의 분류 정확도를 나타내었다.

KCI등재

5Landsat-7 ETM+영상을 이용한 안성지역의 불투수도 추정

저자 : 김성훈 ( Sung Hoon Kim ) , 허준 ( Joon Heo ) , 윤공현 ( Kong Hyun Yun ) , 손홍규 ( Hong Gyoo Sohn )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 529-536 (8 pages)

다운로드

(기관인증 필요)

초록보기

불투수도는 도시화, 환경변화를 추정하기 위한 중요한 지수로서 도시 기후 변화, 홍수기철 도시 범람의 증가, 홍수 모델링에 영향 등 도시의 홍수 기상학과 수문학적인 변화와 매우 밀접한 관계가 있다. 본 연구에서는 안성지역 일대를 대상으로 하여 Landsat ETM+ 영상을 이용한 불투수도 작성을 시도하였다. 학습 및 검수자료는 고해상도 영상인 IKONOS 영상을 이용하였으며, Landsat ETM+ 영상에 대한 위성반사율을 이용하여 tasseled cap과 NDVI로 전환하고 다양한 변수들이 불투수도에 미치는 영향을 분석하였다. 그리고 Regression Tree 알고리즘에 따라 불투수도 추정식을 개발하여 지도화하였다.

KCI등재

6실내 분광 측정자료를 이용한 선형혼합모델의 오차 분석

저자 : 김선화 ( Sun Hwa Kim ) , 신정일 ( Jung Il Shin ) , 신상민 ( Sang Min Shin ) , 이규성 ( Kyu Sung Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 537-546 (10 pages)

다운로드

(기관인증 필요)

초록보기

초분광영상의 분석 기법 중 하나인 선형혼합분석기법은 각 화소를 구성하는 구성물질과 구성 비율을 추정하는데 매우 유용하게 사용되고 있다. 선형혼합모델은 지질 및 광물분포와 관련된 분야에서는 비교적 성공적으로 시도되고 있으나, 산림이나 여러 인공물들로 구성된 도시와 같은 상대적으로 복잡한 구조를 가진 혼합체에서는 그 정확도가 떨어진다. 본 연구에서는 식물과 토양의 혼합체를 대상으로 선형혼합모델을 적용하여 계산된 혼합체의 반사값과 실제 이 혼합체들을 분광측정기로 측정한 반사값과의 비교를 통해, 선형혼합모델의 오차를 계산하였다. 이를 통해 선형혼합모델의 오차 원인인 구성 물질간의 분광적 상호 작용이 어느 경우 발생 혹은 증가하는지를 분석하고, 또한 파장대별 상호작용의 정도 차이가 있는지를 분석 하였다. 연구 결과, 선형혼합모델은 혼합체를 구성하는 구성물질의 구성비율이 비슷한 경우, 각 구성 물질간의 상호작용이 증가하여 선형혼합모델의 오차가 가장 커지는 것을 알 수 있었다. 결과적으로 선형혼합모델의 오차 원인인 구성 물질간 상호작용의 발생 정도는 혼합체를 구성하는 성분의 종류, 반사 특성, 구성비율, 파장대와 구성 성분의 배열 상태에 따라 다르게 나타나는 것을 알 수 있었다. 향후 선형혼합모델의 정확도를 높이기 위해서는 이러한 혼합체의 특징들이 구성 물질간의 상호작용에 끼치는 영향을 정량적으로 분석하여야 할 것이다.

KCI등재

7저해상도 Multispectral 영상의 고해상도 재구축

저자 : 이상훈 ( Sang Hoon Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 547-552 (6 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 고해상도의 panchromatic 영상을 이용하여 저해상도의 multispectral 영상을 고해상도로 재구축하는 방법을 제시하고 있다. 제안된 방법은 저해상도와 고해상도 간의 선형 모형 사용하여 실제의 spectral 값에 부합하는 고해상도 영상을 재구축하며 두 단계로 이루어 진다. 첫 단계는 고해상도 feature와 연관된 저해상도의 선형 모형을 이용하여 최소 자승 오류 법에 의한 global 추정 과정이고 두 번째 단계는 재구축된 영상을 지역적으로 원래의 spectral 값과 일관되게 만드는 local 수정 과정이다. 본 연구에서 제안 방법을 이용하여 6m KOMPSAT-1 EOC 자료와 30m LANDSAT ETM+에 적용하였고 또한 IKONOS 1m RGB 영상 생성하였다. 실험 결과는 새로이 제시된 방법이 저해상도 Multispectral 영상의 고해상도 재구축에 탁월한 성능을 가지고 있음을 보여주었다.

KCI등재

8벡터내적 기반 카메라 외부 파라메터 응용: 카메라와 레이져스캐너간의 캘리브레이션

저자 : 전재춘 ( Jae Choon Chon ) , Shankar Sastry

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 553-558 (6 pages)

다운로드

(기관인증 필요)

초록보기

영상의 두점과 카메라 초점을 지나는 벡터들간의 사잇각을 기반한 방정식은 카메라 위치와 제세가 독립적으로 분리시킬 수 있다. 본 논문은 이 방정식의 두번째 응용으로써, 벡터내적 기반 방정식에 의해 생성된 곡면 분석을 통한 카메라와 레이져 라인 스캐너간의 상대적인 외부표정 계산을 소개한다.

KCI등재

9ALOS PALSAR 자료를 이용한 연안지역의 DEM 생성 -긴밀도와 고도 민감도 분석을 중심으로-

저자 : 최정현 ( Jung Hyun Choi ) , 이창욱 ( Chang Wook Lee ) , 원중선 ( Joong Sun Won )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 559-566 (8 pages)

다운로드

(기관인증 필요)

초록보기

레이더 위성간섭기법은 지형의 고도 및 변위를 정밀하게 측정하는데 널리 사용되고 있는 기술이다. 이 중 L 밴드의 경우, C또는 X 밴드의 영상보다 시간간격의 영향이 적기 때문에 긴 기선거리를 가진 간섭쌍도 DEM생성을 위한 충분한 긴밀도를 유지하게 된다. 따라서 L 밴드를 사용할 경우, DEM 정밀도에 영향을 주는 고도 민감도가 높아지게 되므로 연안 지역과 같은 평탄한 지형의 DEM 제작에 매우 효과적이다. 국내 서해안의 경우, 얕은 수심과 큰 조차로 인해 넓은 갯벌이 존재하며 국토 확장의 목적으로 시작된 대규모의 간척 사업에 행해졌다. 따라서 연안지역의 지속적인 관리와 보전을 위하여 정밀한 DEM이 필요하다. 본 연구의 목적은 L밴드 ALOS PALSAR 자료의 위상간섭기법을 통한 서해안 연안지역의 지형고도 정보 획득 및 연안지역 DEM 생성의 가능성을 살펴보는 것이다. 한반도 서해안 시화, 회옹간척지 및 강화 납부 갯벌에서 46일의 기간간격을 지닌 2007/05/22 과 2007/08/22의 간섭쌍과 2007/08/22 과 2007/10/22의 간섭쌍을 이용하여 DEM 을 제작하였다. 각 각의 고도민감도는 2007/05/22 과 2007/08/22 간섭쌍의 경우 73m 이며, 2007/08/22 과 2007/10/22 간섭쌍은 185m의 값을 갖는다. 그러나, 2007/05/22 과 2007/08/22 간섭쌍의 경우 두 자료간의 긴밀도 값이 낮으며(강화도 남쪽 갯벌:0.5-0.6 화옹 시화 간척지:0.6-0.7), 연구지역의 조위차로 인하여 전체적인 강화도 남쪽 갯벌의 고도가 측정되지 않았다. 반면, 2007/08/22 과 2007/10/22 간섭쌍의 경우 2007/05/22 과 2007/08/22 간섭쌍에 비하여 높은 긴밀도값 (강화도 남쪽 갯벌 및 화옹, 시화간척:0.9-1)을 가지며, 전체적인 강화도 남쪽 갯벌의 고도 또한 측정 할 수 있었다. 그러나 간섭쌍간의 짧은 기선거리로 인한 낮은 고도민감도로 인하여 정밀한 DEM을 획득 하지 못하였다. 따라서, 향후 획득한 ALOS PALSAR 자료간의 시간간격 및 기선거리가 충분히 유지된다면 획득 간섭쌍간의 높은 긴밀도와 고도 민감도를 가진 자료를 통하여 한반도 서해안지역의 정밀한 DEM 제작이 가능할 것으로 보인다.

KCI등재

10고해상도 위성 영상을 이용한 조류로의 프랙털 분석

저자 : 엄진아 ( Jin Ah Eom ) , 이윤경 ( Yoon Kyung Lee ) , 유주형 ( Joo Hyung Ryu ) , 원중선 ( Joong Sun Won )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 23권 6호 발행 연도 : 2007 페이지 : pp. 567-573 (7 pages)

다운로드

(기관인증 필요)

초록보기

조간대의 조류로 발달은 조간대 퇴적물 종류, 입도, 조성 및 조류의 세기 등에 많은 영향을 받는다. 조류로의 발달 특성, 밀도, 형태 등은 조간대의 특징을 분석하는데 활용될 수 있다. 그러나 조류로에 대한 정량적 분석은 시도되지 못하고 있다. 따라서 이번 연구의 목적은 고해상도 위성 영상 자료를 이용하여 조류로에 대한 프랙털 차원 결과와 조류로 발달에 영향을 주는 지형(DEM: Digital Elevation Model)을 비교·분석 하는 것이다. 이번 연구에서는 프랙털 분석 중에서 하천, 해안 등 선형의 특징에 많은 적용을 하는 box counting 방법을 이용하였다. 연구 지역은 조차가 심한 강화도 남단의 조간대이다. 연구 방법은 IKONOS 영상으로부터 조류로를 추출한 뒤 프랙털 차원을 구하였다. 그 결과 프랙털 차원은 약 1.0~1.35 정도의 결과 값을 얻었다. 지형이 낮으며 채널의 발달이 미비한 지역(강화도 남단 여차리 부근)에서는 프랙털 차원이 약 1.0~1.2 정도의 낮은 값을 가지는 반면에 지형이 높고 채널 발달이 수지상으로 잘 발달된 지역 (영종도 북단)의 프랙털 차원은 약 1.20~1.35 정도의 높은 값을 가진다. 이 분석으로부터 프랙털 분석으로 인하여 조류로의 정량적 분류가 가능하며 지역의 지형에 따라서 조류로의 발달 형태가 달라 프랙털 차원 값이 다르다는 결론을 얻었다.

12
발행기관 최신논문
자료제공: 네이버학술정보
발행기관 최신논문
자료제공: 네이버학술정보

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기