간행물

한국정보처리학회> 정보처리학회논문지. 소프트웨어 및 데이터 공학

정보처리학회논문지. 소프트웨어 및 데이터 공학 update

KIPS Transactions on Software and Data Engineering

  • : 한국정보처리학회
  • : 공학분야  >  전자공학
  • : KCI등재
  • :
  • : 연속간행물
  • : 월간
  • : 2287-5905
  • : 2734-0503
  • :

수록정보
수록범위 : 1권1호(2012)~11권10호(2022) |수록논문 수 : 723
정보처리학회논문지. 소프트웨어 및 데이터 공학
11권10호(2022년 10월) 수록논문
최근 권호 논문
| | | |

KCI등재

저자 : 문현아 ( Hyeon-ah Moon ) , 박수용 ( Sooyong Park )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 10호 발행 연도 : 2022 페이지 : pp. 399-408 (10 pages)

다운로드

(기관인증 필요)

초록보기

이더리움 토큰 스마트 계약의 표준 API인 ERC-20은 지갑이나 분산 거래소같은 응용 프로그램들에서 호환성을 보장하기 위해 도입되었다. 그러나 API의 동작에 대한 엄밀한 기능 명세와 표준 적합성 리뷰 도구는 지원되고 있지 않아 호환성 취약점 문제가 발생할 수 있다. 본 논문에서는 이더리움 블록체인의 ERC-20 토큰 스마트 계약 프로그램들의 관례상 표준에 부합하는지 검사하는 새로운 리뷰 절차와 이를 지원하는 도구를 제안하였다. 기존 이더리움 블록체인 시장 상위 100개의 토큰 스마트 계약 프로그램들을 ERC-20 API 기능 동작면에서 분석한 지식을 바탕으로 관례상 표준을 명시적으로 정의하였고, 이렇게 정의된 관례상 표준으로 새로운 ERC-20 스마트 계약 프로그램을 체계적으로 리뷰할 수 있는 방법을 설계할 수 있었다. 이 리뷰 방법을 지원하는 도구를 개발하고 벤치마크 프로그램에 대해 실험 평가하였다.


ERC-20, the standard API for Ethereum token smart contracts, was introduced to ensure compatibility among applications such as wallets and decentralized exchanges. However, many compatibility vulnerability problems have existed because there is no rigorous functional specifications for each API nor conformance review tools for the standard. In this paper, we proposed a new review procedure and a tool to perform the procedure to review if ERC-20 token smart contract programs for the Ethereum blockchain conform to the de facto standards. Based on the knowledge from an analysis on the ERC-20 API functional behavior of the top 100 token smart contract programs in the existing Ethereum blockchain, a new specification for the de facto standard for ERC-20 API was explicitly defined. The new specification enabled us to design a systematic review method for Ethereum smart contract programs. We developed a tool to support this review method and we evaluated a few benchmark programs with the tool.

KCI등재

저자 : 박소현 ( So-hyun Park ) , 김서연 ( Seo-yeon Kim ) , 박영호 ( Young-ho Park )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 10호 발행 연도 : 2022 페이지 : pp. 409-418 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 연주자 자세의 그라운드 트루스 획득을 위한 반자동 주석 방법인 SAAnnot-C3Pap를 제안한다. 기존 음악 도메인에서 2차원 관절 위치에 대한 그라운드 트루스를 획득하기 위하여 2차원 자세 추정 방법인 오픈포즈를 활용하거나 수작업으로 라벨링 하였다. 하지만 기존의 오픈포즈와 같은 자동 주석 방법은 빠르지만 부정확한 결과를 보인다는 단점이 있고, 사용자가 직접 주석을 생성하는 수작업 주석화의 경우 많은 노동력이 필요하다는 한계점이 있다. 따라서 본 논문에서는 그 둘의 절충 방안인 반자동 주석화 방법인 SAAnnot-C3Pap을 제안한다. 제안하는 SAAnnot-C3Pap은 크게 3가지 과정으로 오픈포즈를 사용하여 자세를 추출하고, 추출된 부분 중 오류가 있는 부분을 슈퍼바이즐리를 사용하여 수정한 뒤, 오픈포즈와 슈퍼바이즐리의 결과값을 동기화하는 과정을 수행한다. 제안하는 방법을 통하여 오픈포즈에서 발생하는 잘못된 2차원 관절위치 검출 결과를 교정할 수 있었고, 2명 이상의 사람을 검출하는 문제를 해결하였으며, 연주 자세 그라운드 트루스 획득이 가능하였다. 실험에서는 반자동 주석 방법인 오픈포즈와 본 논문에서 제안하는 SAAnnot-C3Pap의 결과를 비교·분석한다. 비교 결과, 제안하는 SAAnnot-C3Pap는 오픈포즈로 잘못 수집된 자세 정보를 개선한 결과를 보였다.


In this paper, we propose SAAnnot-C3Pap, a semi-automatic annotation method for obtaining ground truth of a player's posture. In order to obtain ground truth about the two-dimensional joint position in the existing music domain, openpose, a two-dimensional posture estimation method, was used or manually labeled. However, automatic annotation methods such as the existing openpose have the disadvantages of showing inaccurate results even though they are fast. Therefore, this paper proposes SAAnnot-C3Pap, a semi-automated annotation method that is a compromise between the two. The proposed approach consists of three main steps: extracting postures using openpose, correcting the parts with errors among the extracted parts using supervisely, and then analyzing the results of openpose and supervisely. Perform the synchronization process. Through the proposed method, it was possible to correct the incorrect 2D joint position detection result that occurred in the openpose, solve the problem of detecting two or more people, and obtain the ground truth in the playing posture. In the experiment, we compare and analyze the results of the semi-automated annotation method openpose and the SAAnnot-C3Pap proposed in this paper. As a result of comparison, the proposed method showed improvement of posture information incorrectly collected through openpose.

KCI등재

저자 : 주찬양 ( Chan-yang Ju ) , 박지성 ( Ji-sung Park ) , 이동호 ( Dong-ho Lee )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 10호 발행 연도 : 2022 페이지 : pp. 419-426 (8 pages)

다운로드

(기관인증 필요)

초록보기

본 논문에서는 다양한 운동 모션에서 3차원 사람 자세 추정 모델의 정확도를 향상하는 방법을 제안한다. 기존의 사람 자세 추정 모델은 사람의 자세를 추정할 때 좌표 오차를 유발하는 흔들림, 반전, 교환, 오검출 등의 문제가 발생한다. 이러한 문제는 사람 자세 추정 모델의 정확한 자세 추정을 어렵게 한다. 이를 해결하기 위해 본 논문에서는 딥러닝 기반 이상치 검출 및 보정 방법을 제안한다. 딥러닝 기반의 이상치 검출 방법은 여러 모션에서 좌표의 이상치를 효과적으로 검출하고, 모션의 특징을 활용한 규칙 기반 보정 방법을 통해 이상치를 보정한다. 다양한 실험과 분석을 통하여 제안하는 방법이 골프 스윙 모션과 다양한 운동 모션에서도 사람의 자세를 정확히 추정할 수 있고, 3차원 좌표 데이터에서도 확장 가능함을 보인다.


In this paper, we propose a method to improve the accuracy of 3D human pose estimation model in various move motions. Existing human pose estimation models have some problems of jitter, inversion, swap, miss that cause miss coordinates when estimating human poses. These problems cause low accuracy of pose estimation models to detect exact coordinates of human poses. We propose a method that consists of detection and correction methods to handle with these problems. Deep learning-based outlier detection method detects outlier of human pose coordinates in move motion effectively and rule-based correction method corrects the outlier according to a simple rule. We have shown that the proposed method is effective in various motions with the experiments using 2D golf swing motion data and have shown the possibility of expansion from 2D to 3D coordinates.

KCI등재

저자 : 김지훈 ( Kim Ji Hun ) , 이지항 ( Lee Jee Hang )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 10호 발행 연도 : 2022 페이지 : pp. 427-436 (10 pages)

다운로드

(기관인증 필요)

초록보기

산업통상자원부에서 제공하는 KOTRA 무역 데이터는 해당 품목과 해당 국가에 대하여 GDP, 관세율, 비즈니스 점수, 과/차년도 수출금액 등을 제공한다. 그러나 무역 수출품목은 수없이 많을뿐더러 그에 따른 대량의 데이터를 매년 수작업 기반 분석을 통해 유의미한 결과를 이끌어내는 것은 상당히 큰 시간과 비용을 요구한다. 따라서 이번 연구에선 대량의 데이터를 학습하여 단기간에 저비용으로 결과 예측이 가능한 다층 퍼셉트론모델을 구현하고 성능을 평가하였다. 먼저 딥러닝 기반 무역 수출 가격 예측 모델을 일반적 다변량 회귀 모델과 비교하였을 때, 예측 오류와 학습시간 측면에서 통계적으로 우수한 성능을 보였다. 수출 가격 데이터는 시계열 속성이 있을 것으로 예상하는 바, 은닉 노드들이 모두 연결된 다층 퍼셉트론과 순환 신경망을 이용하여 수출 가격 데이터를 예측하였다. 그 결과 새로운 데이터에 대해 수출 가격 예측을 위한 일반화 능력은 순환신경망이 우수한 성능을 보였으나, 다층 퍼셉트론이 무역 수출 가격 예측에서 더 뛰어난 성능을 보였다. 추후 장기간 데이터를 확보한다면, 순환신경망 혹은 트랜스포머 기반 딥러닝 모델을 이용하여 더 뛰어난 수출 가격 예측이 가능할 것으로 사료된다.


Korea Trade-Investment Promotion Agency (KOTRA) annually publishes the trade data in South Korea under the guidance of the Ministry of Trade, Industry and Energy in South Korea. The trade data usually contains Gross domestic product (GDP), a custom tariff, business score, and the price of export items in previous and this year, with regards to the trading items and the countries. However, it is challenging to figure out the meaningful insight so as to predict the future price on trading items every year due to the significantly large amount of data accumulated over the several years under the limited human/computing resources. Within this context, this paper proposes a multi layer perception that can predict the future price of potential trading items in the next year by training large amounts of past year's data with a low computational and human cost.

KCI등재

저자 : Milandu Keith Moussavou Boussougou , 박동주 ( Dong-joo Park )

발행기관 : 한국정보처리학회 간행물 : 정보처리학회논문지. 소프트웨어 및 데이터 공학 11권 10호 발행 연도 : 2022 페이지 : pp. 437-446 (10 pages)

다운로드

(기관인증 필요)

초록보기

보이스피싱 통화 내용을 탐지하고 분류하는데 핵심 엔진으로 최신 머신러닝(ML) 및 딥러닝(DL) 알고리즘과 결합된 자연어 처리(NLP)의 텍스트 분류 작업이 널리 사용된다. 비대면 금융거래의 증가와 더불어 보이스피싱 통화 내용 분류에 대한 많은 연구가 진행되고 양호한 성과를 보이고 있지만, 최신 NLP 기술을 활용한 성능 개선의 필요성이 여전히 존재한다. 본 논문은 KorCCVi라는 레이블이 지정된 한국 보이스 피싱 데이터의 텍스트 분류를 기반으로 여러 다른 최신 알고리즘과 비교하여 사전 훈련된 한국어 모델 KoBERT의 한국 보이스 피싱 탐지 성능을 벤치마킹한다. 실험 결과에 따르면 KoBERT 모델의 테스트 집합에서 분류 정확도가 99.60%로 다른 모든 모델의 성능을 능가한다.


Text classification task from Natural Language Processing (NLP) combined with state-of-the-art (SOTA) Machine Learning (ML) and Deep Learning (DL) algorithms as the core engine is widely used to detect and classify voice phishing call transcripts. While numerous studies on the classification of voice phishing call transcripts are being conducted and demonstrated good performances, with the increase of non-face-to-face financial transactions, there is still the need for improvement using the latest NLP technologies. This paper conducts a benchmarking of Korean voice phishing detection performances of the pre-trained Korean language model KoBERT, against multiple other SOTA algorithms based on the classification of related transcripts from the labeled Korean voice phishing dataset called KorCCVi. The results of the experiments reveal that the classification accuracy on a test set of the KoBERT model outperforms the performances of all other models with an accuracy score of 99.60%.

1
권호별 보기

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기