간행물

대한원격탐사학회> 대한원격탐사학회지

대한원격탐사학회지 update

Korean Journal of Remote Sensing

  • : 대한원격탐사학회
  • : 자연과학분야  >  기타(자연과학)
  • : KCI등재
  • :
  • : 연속간행물
  • : 격월
  • : 1225-6161
  • : 2287-9307
  • :

수록정보
37권5호(2021) |수록논문 수 : 52
간행물 제목
38권4호(2022년 08월) 수록논문
최근 권호 논문
| | | |

KCI등재

저자 : Soyeon Park , No-wook Park

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 327-341 (15 pages)

다운로드

(기관인증 필요)

초록보기

Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.

KCI등재

저자 : Yongseung Kim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 343-353 (11 pages)

다운로드

(기관인증 필요)

초록보기

An attempt to derive the surface temperature from the Korea Multi-purpose Satellite (KOMPSAT)-3A mid-wave infrared (MWIR) data acquired over the southern California on Nov. 14, 2015 has been made using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model. Since after the successful launch on March 25, 2015, the KOMPSAT-3A spacecraft and its two payload instruments ― the high-resolution multispectral optical sensor and the scanner infrared imaging system (SIIS) ― continue to operate properly. SIIS uses the MWIR spectral band of 3.3-5.2 μm for data acquisition. As input data for the realistic simulation of the KOMPSAT-3A SIIS imaging conditions in the MODTRAN model, we used the National Centers for Environmental Prediction (NCEP) atmospheric profiles, the KOMPSAT-3A sensor response function, the solar and line-of-sight geometry, and the University of Wisconsin emissivity database. The land cover type of the study area includes water, sand, and agricultural (vegetated) land located in the southern California. Results of surface temperature showed the reasonable geographical pattern over water, sand, and agricultural land. It is however worthwhile to note that the surface temperature pattern does not resemble the top-of-atmosphere (TOA) radiance counterpart. This is because MWIR TOA radiances consist of both shortwave (0.2-5 μm) and longwave (5-50 μm) components and the surface temperature depends solely upon the surface emitted radiance of longwave components. We found in our case that the shortwave surface reflection primarily causes the difference of geographical pattern between surface temperature and TOA radiance. Validation of the surface temperature for this study is practically difficult to perform due to the lack of ground truth data. We therefore made simple comparisons with two datasets over Salton Sea: National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) field data and Salton Sea data. The current estimate differs with these datasets by 2.2 K and 1.4 K, respectively, though it seems not possible to quantify factors causing such differences.

KCI등재

저자 : Won-jun Choi , Chan-su Yang

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 355-364 (10 pages)

다운로드

(기관인증 필요)

초록보기

In this study a tendency of abnormal sea surface temperature (SST) occurrence in the seas around South Korea is analyzed from daily SST data from satellite and 14 buoys from August 2020 to July 2021. As thresholds 28℃ and 4℃ are used to determine marine heatwaves (MHWs) and abnormal low water temperature (ALWT), respectively, because those values are adopted by the National Institute of Fisheries Science for the breaking news of abnormal temperature. In order to calculate frequency of abnormal SST occurrence spatially by using satellite SST, research area was divided into six areas of coast and three open seas. ALWT dominantly appeared over a wide area (7,745 km2) in Gyeonggi Bay for total 94 days and it was also confirmed from buoy temperature showing an occurrence number of 47 days. MHWs tended to be high in frequency in the coastal areas of Chungcheongdo and Jeollabukdo and the south coastal areas while in case of buoy temperature Jupo was the place of high frequency (32 days). This difference was supposed to be due to the low accuracy of satellite SST at the coasts. MHWs are also dominant in offshore waters around Korean Peninsula. Although detecting abnormal SST by using satellite SST has advantage of understanding occurrence from a spatial point of view, we also need to perform detection using buoys to increase detection accuracy along the coast.

KCI등재

저자 : Da-woon Jung , Hoonyol Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 365-374 (10 pages)

다운로드

(기관인증 필요)

초록보기

Mining activity causes environmental pollution and geological hazards such as ground subsidence or landslide of which continuous monitoring is necessary. In this study, the activity on the Fushun West Open- Pit Mine (FWOPM), one of the largest open-pit coal mines in Asia located in Fushun, Liaoning Province, China, was analyzed by using a time-series Sentinel-1 InSAR coherence dataset. By using the difference between the two Digital Elevation Models (DEM) of the area, it was possible to confirm that there was a stockpiling activity in the western area of the FWOPM while excavation activity in the eastern area. By using RGB composite images using the yearly-averaged InSAR coherence images, the activity of the mine was confirmed by period, which was confirmed by Google Earth optical images. As a result, it was possible to confirm three landslides and the related activities on the northwest slope and the dumping activity on the west slope of FWOPM.

KCI등재

저자 : Yongjae Chu , Hoonyol Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 375-386 (12 pages)

다운로드

(기관인증 필요)

초록보기

The city of Khartoum, the capital of Sudan, was heavily damaged by the flood of the Nile in 2020. Classification using satellite images can define the damaged area and help emergency response. As Synthetic Aperture Radar (SAR) uses microwave that can penetrate cloud, it is suitable to use in the flood study. In this study, Random Forest classifier, one of the supervised classification algorithms, was applied to the flood event in Khartoum with various sizes of the training dataset and number of images using Sentinel-1 SAR. To create a training dataset, we used unsupervised classification and visual inspection. Firstly, Random Forest was performed by reducing the size of each class of the training dataset, but no notable difference was found. Next, we performed Random Forest with various number of images. Accuracy became better as the number of images increased, but converged to a maximum value when the dataset covers the duration from flood to the completion of drainage.

KCI등재

저자 : Deoksu Kim , Dukwon Bae , Jang-geun Choi , Young-heon Jo

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 387-394 (8 pages)

다운로드

(기관인증 필요)

초록보기

Coastal upwelling is a significantly imperative process for understanding the interactions between physical and ecological processes and has been investigated incessantly. In this study, we explored the upwelling index, specifically upwelling age (UA). UA enabled us to observe the initiating, sustaining, and decaying upwelling processes. Although the sensitivity of many other geophysical parameters to estimate UA has been investigated, the wind direction has not been evaluated. Thus, we assessed the appropriate wind direction for the UA and obtained efficient upwelling signals from the four coastal stations. Furthermore, we applied the UA and compared it with the satellite sea level anomaly, sea surface temperature, and chlorophyll-a changes to validate how UA depicts their spatial extents. Thus, UA can predict the timing of coastal upwelling events using predicted geophysical parameters.

KCI등재

저자 : Seong-hyeok Lee , Soojeong Myeong , Donghyeon Yoon , Moung-jin Lee

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 395-409 (15 pages)

다운로드

(기관인증 필요)

초록보기

The purpose of this study is to evaluate the classification performance and applicability when land cover datasets constructed for AI training are cross validation to other areas. For study areas, Gyeongsang-do and Jeolla-do in South Korea were selected as cross validation areas, and training datasets were obtained from AI-Hub. The obtained datasets were applied to the U-Net algorithm, a semantic segmentation algorithm, for each region, and the accuracy was evaluated by applying them to the same and other test areas. There was a difference of about 13-15% in overall classification accuracy between the same and other areas. For rice field, fields and buildings, higher accuracy was shown in the Jeolla-do test areas. For roads, higher accuracy was shown in the Gyeongsang-do test areas. In terms of the difference in accuracy by weight, the result of applying the weights of Gyeongsang-do showed high accuracy for forests, while that of applying the weights of Jeolla-do showed high accuracy for dry fields. The result of land cover classification, it was found that there is a difference in classification performance of existing datasets depending on area. When constructing land cover map for AI training, it is expected that higher quality datasets can be constructed by reflecting the characteristics of various areas. This study is highly scalable from two perspectives. First, it is to apply satellite images to AI study and to the field of land cover. Second, it is expanded based on satellite images and it is possible to use a large scale area and difficult to access.

KCI등재

저자 : Soojeong Myeong

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 411-419 (9 pages)

다운로드

(기관인증 필요)

초록보기

DPR Korea has been creating cropland across the country due to its chronic food shortage. Cropland was about 17.4% at the end of the 1980s, but it increased steadily to 19.6% at the end of the 1990s, 24.8% at the end of the first decade of 2000s, and 25.4% at the end of the 2010s. On the other hand, the forest land declined from about 74.8% in the late 1980s to 69.5% in the late 2010s. Urbanization is also progressing, increasing from about 1.15% at the end of the 1980s to 1.68% at the end of the 2010s. Most of the deforestation that occurred in DPR Korea was caused by conversion to cropland. These characteristics of land cover changes in DPR Korea provide useful information and implications for international and inter-Korean cooperation for DPR Korea.

KCI등재

저자 : Chul-hee Lim

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 421-434 (14 pages)

다운로드

(기관인증 필요)

초록보기

Fine particulate matter (PM2.5) has been the biggest environmental problem in Korea since the 2010s. The present study considers the value of urban forests and green infrastructure as an ecosystem service (ES) concept for PM2.5 reduction based on satellite and spatial data, with a focus on Seoul, Korea. A method for the spatial ES assessment that considers social demand variables such as population and land price is suggested. First, an ES assessment based on natural environment information confirms that, while the vitality of vegetation is relatively low, the ES is high in the city center and residential areas, where the concentration of PM2.5 is high. Then, the ES assessment considering social demand (i.e., the ESS) confirms the existence of higher PM2.5 values in residential areas with high population density, and in main downtown areas. This is because the ESS of urban green infrastructure is high in areas with high land prices, high population density, and above-average PM2.5 concentrations. Further, when a future green infrastructure improvement scenario that considers the urban forest management plan is applied, the area of very high ESS is increased by 74% when the vegetation greenness of the green infrastructure in the residential area is increased by only 20%. This result suggests that green infrastructure and urban forests in the residential area should be continuously expanded and managed in order to maximize the PM2.5 reduction ES.

KCI등재

저자 : Ho-kun Jeon , Jae Rim Han

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 38권 4호 발행 연도 : 2022 페이지 : pp. 435-446 (12 pages)

다운로드

(기관인증 필요)

초록보기

Identifying ship types is an important process to prevent illegal activities on territorial waters and assess marine traffic of Vessel Traffic Services Officer (VTSO). However, the Terrestrial Automatic Identification System (T-AIS) collected at the ground station has over 50% of vessels that do not contain the ship type information. Therefore, this study proposes a method of identifying ship types through the Random Forest Classifier (RFC) from dynamic and static data of AIS and V-Pass for one year and the Ulsan waters. With the hypothesis that six features, the speed, course, length, breadth, time, and location, enable to estimate of the ship type, four classification models were generated depending on length or breadth information since 81.9% of ships fully contain the two information. The accuracy were average 96.4% and 77.4% in the presence and absence of size information. The result shows that the proposed method is adaptable to identifying ship types.

1
권호별 보기
같은 권호 수록 논문
| | | | 다운로드

KCI등재

저자 : 나상일 ( Sang-il Na ) , 안호용 ( Ho-yong Ahn ) , 류재현 ( Jae-hyun Ryu ) , 소규호 ( Kyu-ho So ) , 이경도 ( Kyung-do Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 833-845 (13 pages)

다운로드

(기관인증 필요)

초록보기

탄소흡수량 산정 및 토지이용 변화에 대한 이해는 기후변화 연구에서 매우 중요하다. 기존의 연구에서는 토지이용 변화에 따른 탄소흡수량 산정에 원격탐사 기술이 사용되고 있으나 대부분 과거의 탄소흡수량 변화에 초점을 맞추고 있다. 따라서 미래 탄소흡수량 변화 예측 연구는 부족한 실정이다. 본 연구에서 CLUE-S 모형을 사용하여 토지이용 변화를 모의하고 기후변화 시나리오를 고려하여 미래 탄소흡수량의 변화를 예측하였다. 그 결과, RCP 4.5 및 8.5 시나리오에서 탄소흡수량은 각각 7.92, 13.02% 감소되는 것으로 예측되었다. 따라서 본 연구에서 제안한 방법은 다른 기후변화 시나리오를 고려한 미래 탄소흡수량 변화에도 적용이 가능할 것으로 기대된다.

KCI등재

저자 : 김상완 ( Sang-wan Kim ) , 이동준 ( Dongjun Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 847-859 (13 pages)

다운로드

(기관인증 필요)

초록보기

최근 고해상도 위성 SAR 영상이 늘어남에 따라, 변화탐지, 영상 융합 등 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 커지고 있다. 영상 정합 결과에 대한 정량적 평가는 분석자에 의해 추출된 GCPs (Ground Control Points)를 이용한 RMSE (Root Mean Square Error) 값이 널리 사용되어 왔으나, 영상정합 결과의 정확도를 자동으로 측정하는 방법에 대한 연구는 미비한 실정이다. 본 연구에서는 SAR 영상 정합의 정확도 평가지표로, 단일채널 영상의 품질 평가 알고리즘으로 개발된 FSIM (Feature Similarity) 값을 적용하는 것에 대한 타당성 분석을 수행하였다. 다양한 관측각도 및 관측방향에서 수집된 TerraSAR-X staring spotlight 자료를 분석에 사용하였다. SAR 영상의 공간 해상도에 따른 FSIM 값 변화는 매우 작은 값을 보였다. 따라서, 다양한 공간해상도의 SAR 영상 간에도 동일한 척도를 가지고 FSIM 값을 사용할 수 있다. 단일 SAR 영상을 이용하여 정합 오차에 따른 FSIM값 변화를 분석하였으며, 이 값을 기준으로 서로 다른 관측조건에서 수집된 영상 간의 정합 오차에 따른 FSIM 값 변화를 분석하였다. 서로 다른 관측각 또는 관측방향 자료 조합에서, 관측기하 차이에 의해 FSIM 값은 다소 저하되었다. 토지피복별 FSIM 값 분석 결과에서, 도심지역에서 정합오차에 따른 FSIM 값의 변화가 가장 뚜렷하게 나타났다. 따라서, FSIM 값을 이용하여 영상정합의 정확도를 판별하기 위해서는 도심지역에서 산출된 FSIM 값을 이용하는 것이 바람직하다. FSIM 값은 SAR 영상 정합 정확도에 대한 지표로 사용될 수 있는 충분한 가능성이 있는 것으로 판단된다.

KCI등재

저자 : 강형우 ( Hyeongwoo Kang ) , 최원이 ( Wonei Choi ) , 박정현 ( Jeonghyun Park ) , 김세린 ( Serin Kim ) , 이한림 ( Hanlim Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 861-870 (10 pages)

다운로드

(기관인증 필요)

초록보기

본 연구에서는 COMS (Communication, Oceanography and Meteorology Satellite) 위성의GOCI (Geostationary Ocean Color Imager) 센서와 Himawari-8 위성의 AHI (Advanced Himawari Imager) 센서에서 산출되는 에어로졸 광학두께 (Aerosol Optical Depth; AOD)를 활용하여 단일화된 AOD 합성장을 생산하였다. 위성 간의 공간해상도와 위치좌표계가 다르기 때문에 이를 맞춰주는 전처리 작업을 선행하였다. 이후 지상관측 기반인 AERONET (AErosol RObotic NETwork)의 레벨 1.5 AOD 자료를 사용하여 각 위성과 AERONET과의 상관관계 분석 및 추세를 보간하여 기존 위성 AOD 보다 정확한 위성 AOD 자료를 생산하였다. 이후 합성과정을 진행하며 최종적으로 시공간적으로 더 완벽하고 정확한 AOD 합성장을 생산하였다. 생산된 AOD 합성장의 제곱근 평균 오차(Root Mean Square Error; RMSE)는 0.13, 평균 편향(mean bias)는 0.05로, 기존의 GOCI AOD (RMSE: 0.15, Mean bias: 0.11)와 AHI AOD (RMSE: 0.15, Mean bias: 0.05) 보다 나은 성능을 보였다. 또한 합성된 AOD는 단일위성에서 구름으로 인하여 관측되지 못한 지역에서 시공간적으로 보다 완벽하게 생산되었음을 확인하였다.

KCI등재

저자 : 이성혁 ( Seong-hyeok Lee ) , 이명진 ( Moung-jin Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 871-884 (14 pages)

다운로드

(기관인증 필요)

초록보기

본 연구의 목적은 항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터를 구축, 검증 및 알고리즘 적용의 효율화 방안을 연구하였다. 이를 위하여 토지피복 8개 항목에 대하여 고해상도의 항공영상 및 Sentinel-2 인공위성에서 얻은 이미지를 사용하여 0.51 m 및 10 m Multi-resolution 데이터셋을 구축하였다. 또한, 학습 데이터의 구성은 Fine data (총 17,000개) 와 Coarse data (총 33,000개)를 동시 구축 및 정밀한 변화 탐지 및 대규모 학습 데이터셋 구축이라는 2가지 목적을 달성하였다. 학습 데이터의 정확도를 위한 검수는 정제 데이터, 어노테이션 및 샘플링으로 3단계로 진행하였다. 최종적으로 검수가 완료된 학습데이터를 Semantic Segmentation 알고리즘 중 U-Net, DeeplabV3+에 적용하여, 결과를 분석하였다. 분석결과 항공영상 기반의 토지피복 평균 정확도는 U- Net 77.8%, Deeplab V3+ 76.3% 및 위성영상 기반의 토지피복에 대한 평균 정확도는 U-Net 91.4%, Deeplab V3+ 85.8%이다. 본 연구를 통하여 구축된 고해상도 항공영상 및 위성영상을 이용한 토지피복 인공지능 학습 데이터셋은 토지피복 변화 및 분류에 도움이 되는 참조자료로 활용이 가능하다. 향후 우리나라 전체를 대상으로 인공지능 학습 데이터셋 구축 시, 토지피복을 연구하는 다양한 인공지능 분야에 활용될 것으로 기대된다.

KCI등재

저자 : 김희애 ( Hee-ae Kim ) , 정성래 ( Sung-rae Chung ) , 오수민 ( Soo Min Oh ) , 이병일 ( Byung-il Lee ) , 신인철 ( In-chul Shin )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 885-901 (17 pages)

다운로드

(기관인증 필요)

초록보기

천리안위성 2A호의 2분 주기 고속 관측(rapid-scan) 자료를 이용하여, 가시·수증기·적외 채널의 시간 해상도와 표적의 크기가 해당 채널의 중규모 대기운동벡터 생산에 미치는 영향을 분석하였다. 중규모 대기운동벡터 산출을 위하여 2-10분의 영상 시간 간격 변화 하에서 표적의 크기를 8×8에서 40×40 화소 크기로 변환시키며, 시·공간적인 조건 변화에 따른 벡터 생산량과 평균 속력, 오차 특성의 변화 양상을 비교하였다. 그 결과, 표적의 크기가 작을수록 위성의 시간 간격 변화에 따른 벡터 개수의 변화와, 표준화된 평균 제곱근 편차(Normalized Root Mean Squared Vector Difference; NRMSVD) 값의 변화가 더욱 뚜렷해졌다. 또한 고도별 오차 특성 분석 결과에서는 평균 속력이 낮고 대기 현상의 시·공간 규모가 작은 하층(700-1000 hPa)의 경우, 짧은 시간 간격의 영상 자료와 작은 표적을 이용하는 것이 벡터 산출에 더욱 유리하게 작용하는 것을 확인할 수 있었다. 위성의 시간 간격과 표적의 크기는 대기 순환의 시·공간 규모와 밀접한 연관이 있는 요소이다. 따라서, 대기운동벡터 활용 목적에 맞게 표적 크기와 위성 시간 간격을 최적화하는 과정이 필요하며, 중규모 기상현상의 실황 분석을 위한 대기운동벡터 산출 알고리즘에서는 표적 크기와 영상 시간 간격을 각각 16×16, 4분으로 설정해주는 것이 가장 적합하다고 판단된다.

KCI등재

저자 : 이보라 ( Bora Lee ) , 이호상 ( Ho-sang Lee ) , 이광수 ( Gwang-soo Lee )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 903-916 (14 pages)

다운로드

(기관인증 필요)

초록보기

지형은 고도, 경사, 측면으로 설명되는 지표면의 물리적인 모양을 나타내는 것으로 지형적 조건에 따라 에너지의 이동이 결정된다. 이것은 태양 에너지를 얼마나 많이 받을지, 바람이나 비가 얼마나 많은 영향을 미칠지 등에 대한 중요한 결정 요인들로 지표면 상에 존재하는 모든 생물, 특히 산림 식생의 입지 환경에 큰 영향을 준다. 도서지역 산림과 같이 자연적으로 형성된 지형 인자가 산림 식생의 생태환경을 결정하는 요인이 될 때 보다 정확한 지형 인자들의 계산은 도서산림의 입지환경을 이해하는데 매우 중요하다. 최근에는 연구자, 학교, 산업 및 정부를 위해 수많은 무료오픈소스 소프트웨어 지리정보시스템 프로그램(Free Open Source Software Geographic Information Systems, FOSS GIS)들이 이러한 지형인자들을 보다 정확하게 계산하기 위해 다양한 알고리즘을 적용하고 있다. FOSS GIS 프로그램은 사용자 요구에 맞게 수정이 가능한 유연한 알고리즘을 제공한다. 이와 같은 수요에 맞춰 이 연구에서는 지형 분석이 특히 중요한 도서지역 산림을 대상으로 하여 FOSS GIS 프로그램들의 지형인자 계산 결과값을 비교해 보고 향후 지역 생태 연구에 있어 지형 인자 계산 방법을 결정할 때 그 기준을 마련하고자 한다. 연구 지역은 전라남도 도서 지역을 대상으로 하였고 FOSS GIS 프로그램 중 가장 널리 사용되는 GRASS GIS와 SAGA GIS로 처리하였다. 입지환경에 있어 가장 널리 사용되는 설명인자인 경사도와 TWI(Topographical Wetness Index) 지도를 각 FOSS GIS 프로그램으로 생성하고 그 차이를 분석하여 각 FOSS GIS 프로그램의 장단점을 토의하였다.

KCI등재

저자 : 문현동 ( Hyun-dong Moon ) , 류재현 ( Jae-hyun Ryu ) , 나상일 ( Sang-il Na ) , 장선웅 ( Seon Woong Jang ) , 신서호 ( Seo-ho Sin ) , 조재일 ( Jaeil Cho )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 917-926 (10 pages)

다운로드

(기관인증 필요)

초록보기

벼 쓰러짐은 벼농사의 대표적인 기상재해 피해로써 강한 바람과 강우로 발생한다. 원격탐사 기법은 넓은 지역의 벼 쓰러짐을 효과적으로 탐지하기에 적절한 방법이다. 실제로 벼 쓰러짐은 벼 키가 최대인 생육 시기에 주로 발생하여 군락의 큰 구조적 변화를 불러오기 때문에 분광 반사도 차이를 야기한다. 따라서, 본고에서는 나주에 위치한 전남농업기술원의 2020년 태풍에 의한 논벼 피해를 444 nm부터 842 nm까지 10개 밴드로 구성된 카메라 영상으로 분석하였다. 드론 영상마다 벼 쓰러짐 피해를 받은 영역과 벼 쓰러짐 피해가 없는 영역으로 구분하여 벼 쓰러짐 영역의 분광 반사도 특성 차이와 식생 탐지에 주로 사용되는 식생지수인 NDVI (Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge), CCI (Chlorophyll Carotenoid Index)의 변화를 살펴보았다. 반사도 값의 변화는 밴드6(668 nm)에서 가장 적었으며, 이를 중심으로 밴드 파장이 감소와 증가할수록 일반 논벼 보다 쓰러짐 영역 반사도가 커졌다. 또한, 쓰러진 벼를 묶어 세운 복구 지역은 대부분의 밴드에 걸쳐 반사도가 크게 감소함을 볼 수 있었다. NDVI와 NDRE는 벼 쓰러짐 영역에 대해 민감하게 반응하였으나, 그 반응 대상 및 정도는 서로 달랐다. 본 연구의 결과는 향후 드론과 위성을 이용한 벼 쓰러짐 피해 조사 알고리즘에 기여될 것으로 기대한다.

KCI등재

저자 : 김민규 ( Mingyu Kim ) , 김정래 ( Jeongrae Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 927-938 (12 pages)

다운로드

(기관인증 필요)

초록보기

편대 비행하는 저궤도위성에는 비슷한 크기의 비중력 섭동이 일정한 시간 차이를 두고 가해진다. 이러한 시간상관관계를 이용하면 한 개 위성의 가속도계에서 측정된 가속도 값으로 다른 편대비행 저궤도위성의 비중력가속도를 추정할 수 있다. 편대비행 저궤도위성인 GRACE 및 GRACE-FO 위성에서 한 개 위성의 가속도계 데이터를 사용할 수 없는 기간이 존재하는데, 앞서 기술된 시간 이식 기법이 JPL (Jet Propulsion Laboratory)에서 공식적으로 가속도계 데이터 복원 시 사용되고 있다. 본 논문에서는 기존의 시간 이식 기법의 가속도계 추정 정확도를 개선하기 위하여 신경망 (neural network; NN) 모델 기반 편대비행 저궤도위성 가속도계 데이터 추정 방법을 제안하였다. 시간 이식 기법은 위성의 위치 및 우주환경요소 등을 반영할 수 없지만, NN 모델은 이를 모델 입력으로 사용할 수 있으므로 예측 정확도를 높일 수 있다. 1개월간 NN 모델을 사용하여 가속도계 예측 시험을 수행하고 시간 이식 기법과 예측 정확도를 비교하였다. 그 결과 along-track 및 radial 방향에서 NN 모델의 가속도계 데이터의 예측 오차는 시간 이식 기법에 비해 각각 55.0%, 40.1% 감소하였다.

KCI등재

저자 : 김상일 ( Sang-il Kim ) , 안도섭 ( Do-seob Ahn ) , 김승철 ( Seung-chul Kim )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 939-946 (8 pages)

다운로드

(기관인증 필요)

초록보기

산불로 인한 피해지역의 산림 변화를 모니터링하는 것은 식생복원에 중요한 정보를 제공하며, 자연 재해를 완화하고 복구하기 위해 공간정보를 가지는 원격탐사 자료는 모니터링에 필요한 유용한 정보를 제공하는 것으로 알려져 있다. 하지만 원격탐사자료를 활용한 복구 측면에 초점 두어 연구된 사례가 미비한 상황이다. 본 연구는 화재 후 식생회복을 모니터링하기 위한 것으로, Sentinel-2 위성 데이터를 사용하여 산불 피해 지역을 모니터링하는 방법을 제시하는 것을 목적으로 한다. 산불피해지역의 식생회복 모니터링을 위해 Tasseled Cap 선형회귀 추세를 기반으로 RGB 합성기술을 제안하였다. 이러한 위성영상을 활용한 원격탐사 시각화 기법을 통해 효과적인 모니터링 가능성을 확인할 수 있었다.

KCI등재

저자 : 이경도 ( Kyung-do Lee ) , 안호용 ( Ho-yong Ahn ) , 류재현 ( Jae-hyun Ryu ) , 소규호 ( Kyu-ho So ) , 나상일 ( Sang-il Na )

발행기관 : 대한원격탐사학회 간행물 : 대한원격탐사학회지 37권 5호 발행 연도 : 2021 페이지 : pp. 947-958 (12 pages)

다운로드

(기관인증 필요)

초록보기

본 연구는 무인비행체에 탑재해서 활용되고 있는 다중분광 센서의 센서별 반사율 및 식생지수를 산정하여 시계열 작황분석을 위한 센서별, 센서간 활용 가능성을 평가하기 위해 수행하였다. RedEdge-MX, S110 NIR, Sequioa, P4M 등 4종의 무인비행체 탑재 다중분광센서에 대하여 2020년 9월 14일과 9월 15일에 걸쳐 오전, 오후 각 1회, 총 4회씩 항공영상을 촬영하고 반사율 및NDVI를 산정하여 비교하였다. 반사율의 경우 모든 센서에서 시계열 변동계수가 평균 약 10% 이상의 값을 보여 활용에는 한계가 있는 것으로 나타났다. 작물 시험구에 대한 센서별NDVI 변동계수는 식생이 우거져 활력도가 높은 시험구에서 평균 1.2~3.6%의 값을 보여 5% 이내의 변동성을 보였다. 그러나 이는 청천일의 변동계수에 비해서는 높은 값을 보인 것으로서 실험 기간 동안 오전, 오후에 구름 등 기상환경이 달랐기 때문으로 판단되며 시계열 작황 분석을 위한 정밀NDVI 산정 시에는 일정한 광 환경을 유지할 수 있는 촬영 계획 수립과 이행이 필요할 것으로 판단된다. 무인비행체 다중분광센서 간NDVI를 상호 비교한 결과 본 실험에서는 RedEdeg-MX 센서의 경우 안정적인 광 환경 내에서 동종의 센서를 여러 대 사용하더라도NDVI 값의 특별한 보정 없이 함께 활용할 수 있을 것으로 판단된다. RedEdge-MX, P4M, Sequioa 센서는 상호 선형적인 관계를 보였으나NDVI 간의 off-set 보정을 통한 공동 활용 가능성 평가를 위해서는 보완 실험이 필요할 것으로 생각된다.

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기