간행물

한국전기전자재료학회> 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.)

전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) update

Journal of the Korean Institute of Electrical and Electronic Material Engineers

  • : 한국전기전자재료학회
  • : 공학분야  >  전기공학
  • : KCI등재
  • :
  • : 연속간행물
  • : 격월
  • : 1226-7945
  • : 2288-3258
  • : 전기전자재료학회지(~1997)→전기전자재료학회논문지

수록정보
35권3호(2022) |수록논문 수 : 15
간행물 제목
35권5호(2022년 09월) 수록논문
최근 권호 논문
| | | |

KCI등재

저자 : 민유호 ( Yuho Min )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 419-430 (12 pages)

다운로드

(기관인증 필요)

초록보기

Defects in solids play a vital role on thermoelectric properties through the direct impacts of electronic band structure and electron/phonon transports, which can improve the electronic and thermal properties of a given thermoelectric semiconductor. Defects in semiconductors can be divided into four different types depending on their geometric dimensions, and thus understanding the effects on thermoelectric properties of each type is of a vital importance. This paper reviews the recent advances in the various thermoelectric semiconductors through defect engineering focusing on the charge carrier and phonon behaviors. First, we clarify and summarize each type of defects in thermoelectric semiconductors. Then, we review the recent achievements in thermoelectric properties by applying defect engineering when introducing defects into semiconductor lattices. This paper ends with a brief discussion on the challenges and future directions of defect engineering in the thermoelectric field.

KCI등재

저자 : 최진산 ( Jin San Choi ) , 김태헌 ( Tae Heon Kim ) , 안창원 ( Chang Won Ahn )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 431-438 (8 pages)

다운로드

(기관인증 필요)

초록보기

기능성 소재연구에서 in situ 분석 기법은 외부 자극 (전기장, 자기장, 빛, 등) 또는 주변 환경 (온도, 습도, 압력, 등)과 같이 주어진 자극에 의해 소재의 물리적 특성이 어떻게 활성화/진화되는지 분석하는데 있어서 매우 중요하다. 특히, 전기장 인가에 따른 in situ X-선 회절(XRD) 실험은 다양한 강유전체, 압전체, 전왜 재료의 외부 전기장 인가에 따른 전기-기계적 반응의 기본 원리를 이해하기 위해 광범위하게 활용되었다. 본 튜토리얼 논문에서는 일반 실험실 규모의 XRD 장비를 이용하여 전기장 인가에 따른 in situ XRD 분석의 기본 원리/핵심 개념을 간략하게 소개한다. In situ XRD 측정법은 외부 전기장을 인가하여 구동되는 다양한 전기-기계 재료의 구조적 변형을 체계적으로 식별/모니터링하는 데 매우 유용할 것으로 기대한다.


In functional materials, in situ experimental techniques as a function of external stimulus (e.g., electric field, magnetic field, light, etc.) or changes in ambient environments (e.g., temperature, humidity, pressure, etc.) are highly essential for analyzing how the physical properties of target materials are activated/evolved by the given stimulation. In particular, in situ electric-field-dependent X-ray diffraction (XRD) measurements have been extensively utilized for understanding the underlying mechanisms of the emerging electromechanical responses to external electric field in various ferroelectric, piezoelectric, and electrostrictive materials. This tutorial article briefly introduces basic principles/key concepts of in situ electric-field-dependent XRD analysis using a lab-scale XRD machine. We anticipate that the in situ XRD method provides a practical tool to systematically identify/monitor a structural modification of various electromechanical materials driven by applying an external electric field.

KCI등재

저자 : 황윤식 ( Yun Sik Hwang ) , 남의연 ( Ui Yeon Nam ) , 김연욱 ( Yeon Uk Kim ) , 우유미 ( Yu Mi Woo ) , 허재찬 ( Jae Chan Heo ) , 박정환 ( Jung Hwan Park )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 439-444 (6 pages)

다운로드

(기관인증 필요)

초록보기

Laser-induced plasmonic sintering of metal nanoparticles (NPs) is a promising technology to fabricate flexible conducting electrodes, since it provides instantaneous, simple, and scalable manufacturing strategies without requiring costly facilities and complex processes. However, the metal NPs are quite expensive because complicated synthesis procedures are needed to achieve long-term reliability with regard to chemical deterioration and NP aggregation. Herein, we report laser-induced Ag NP self-generation and sequential sintering process based on low-cost Ag organometallic material for demonstrating highquality microelectrodes. Upon the irradiation of laser with 532 nm wavelength, pre-baked Ag organometallic film coated on a transparent polyimide substrate was transformed into a high-performance Ag conductor (resistivity of 2.2 × 10-4 Ω·cm). To verify the practical usefulness of the technology, we successfully demonstrated a wearable transparent heater by using Ag-mesh transparent electrodes, which exhibited a high transmittance of 80% and low sheet resistance of 7 Ω/square.

KCI등재

저자 : 서인태 ( Intae Seo ) , 최용수 ( Yongsu Choi ) , 조유리 ( Yuri Cho ) , 강형원 ( Hyung-won Kang ) , 김강산 ( Kang San Kim ) , 천채일 ( Chae Il Cheon ) , 한승호 ( Seung Ho Han )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 445-451 (7 pages)

다운로드

(기관인증 필요)

초록보기

Ultrasonic sensor is suitable as a next-generation autonomous driving assist device because its lower price compared to that of other sensors and its sensing stability in the external environment. Although Pb(Zr, Ti)O3 (PZT)-relaxor ferroelectric system has excellent piezoelectric properties, the change in capacitance is large in the daily operating temperature range due to the low phase transition temperature. Recently, many studies have been conducted to improve the temperature stability of ferroelectric ceramics by controlling the grain size and crystal structure, so it is necessary to study the effect of the grain size on the piezoelectric properties and the temperature stability of PZT-relaxor ferroelectric system. In this study, the piezoelectric properties, phase transition temperature, and temperature coefficient of capacitance (TCC) of 0.9 Pb(Zr1-xTix)O3-0.1 Pb(Zn1/3Nb2/3)O3 (PZTx-PZN) ceramics with various grain sizes were investigated. PZTx-PZN ceramics with larger grain size showed higher piezoelectric properties and temperature stability, and are expected to be suitable for ultrasonic devices in the future.

KCI등재

저자 : 김유정 ( You-jeong Kim ) , 이승은 ( Seung-eun Lee ) , 이광선 ( Khwang-sun Lee ) , 박준영 ( Jun-young Park )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 452-458 (7 pages)

다운로드

(기관인증 필요)

초록보기

The electro-thermal erasing (ETE) configuration utilizes Joule heating intentionally generated at word-line (WL). The elevated temperature by heat physically removes stored electrons permanently within a very short time. Though the ETE configuration is a promising next generation NAND flash memory candidate, a consideration of power efficiency and erasing speed with respect to device structure and its scaling has not yet been demonstrated. In this context, based on 3-dimensional (3-D) thermal simulations, this paper discusses the impact of device structure and scaling on ETE efficiency. The results are used to produce guidelines for ETEs that will have lower power consumption and faster speed.

KCI등재

저자 : 김경헌 ( Kyeong Heon Kim ) , 김희동 ( Hee-dong Kim )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 459-465 (7 pages)

다운로드

(기관인증 필요)

초록보기

This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

KCI등재

저자 : 이동원 ( Dong Won Lee ) , 안호명 ( Ho-myoung Ahn ) , 김병철 ( Byungcheul Kim )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 466-470 (5 pages)

다운로드

(기관인증 필요)

초록보기

In order to widely disseminate LED lighting, LED lighting technology that directly uses AC commercial power has been recently introduced. AC powered LED lighting technology has a problem in that the light brightness of the LED changes because the voltage applied to the LED and the current flowing through the LED continuously change. In this study, when the LED current is greater than the design current, the current control signal generated by the controller is supplied to the current source to supply only the design current to the LED by increasing the voltage drop at the current source. If it is smaller than the design current, the controller is adjusted so that the current is supplied only to the LED without a voltage drop in the current source. It can be seen that the higher the maximum rectified voltage, the faster the lighting time of the LED light emitting block is, so that the power factor of the LED lighting is improved. The LED lighting technology proposed in this study enables LED lighting with constant light brightness, reduced power consumption, and long lifetime.

KCI등재

저자 : 신호용 ( Ho-yong Shin ) , 이호용 ( Ho-yong Lee ) , 홍일곡 ( Il-gok Hong ) , 김종호 ( Jong-ho Kim ) , 임종인 ( Jong-in Im )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 471-479 (9 pages)

다운로드

(기관인증 필요)

초록보기

Recently, piezoelectric devices, such as ultrasonic surgery, ultrasonic atomizer, and ultrasonic speaker, are analyzed and designed by finite element simulation methods. However, the discrepancy between the design and the experiment results of the device typically occurs due to the inaccuracy of the piezoelectric material properties. To improve the simulation accuracy, the material properties of the PZT ceramics were better refined using parameter estimation method. The material parameters are elastic stiffness cEij and piezoelectric constant eij of PZT ceramics. The impedance curve characteristics for the LTE mode of PZT ceramics were calculated. The mismatch between the simulation and the experimental data were compared and minimized by a least square method. Finally, the simulated impedance data were compared with the experimental data for the various vibration modes of PZT ceramics and the optimized material properties of PZT ceramics were verified. To further verify the accuracy, this method was also applied to piezoelectric PMN-PT single crystals.

KCI등재

저자 : 차영광 ( Young-kwang Cha ) , 이일회 ( Il-hoi Lee ) , 전기범 ( Ki-beom Jeon ) , 장지훈 ( Ji-hoon Jang ) , 주흥진 ( Heung-jin Ju )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 480-487 (8 pages)

다운로드

(기관인증 필요)

초록보기

As a process to improve the insulation performance of VIs (Vacuum Interrupters), AC voltage conditioning is generally adopted by many manufacturers. Although the insulation performance is enhanced easily with AC Voltage conditioning, it has limitations when high recovery voltage is required due to high voltage rate or capacitive current switching. In particular, impurities such as oxides segregated on the electrode surface can be removed not by the energy level of the voltage conditioning but by the higher energy level achieved by the current conditioning process In this article, the current conditioning was carried out in various conditions and its validity was examined. The current conditioning was processed by changing the amplitude of applied current, arc time, the number of tests, and frequency. The insulation performance and the status of contact surface were checked as well. We concluded that as the applied charge quantity and the conditioning coverage area increase, the conditioning effect is much higher.

KCI등재

저자 : 최영철 ( Young-chul Choi ) , 박용섭 ( Yong Seob Park )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 5호 발행 연도 : 2022 페이지 : pp. 488-493 (6 pages)

다운로드

(기관인증 필요)

초록보기

Generally, diamond-like carbon films (a-C:H, DLC) have been shown to have a low coefficient of friction, a high hardness and a low wear rate. Pd-doped C thin film was fabricated using a dual magnetron sputtering with two targets of graphite and palladium. Graphite target RF power was fixed and palladium target RF power was varied. The structural, physical, and surface properties of the deposited thin film were investigated, and the correlation among these properties was examined. The doping ratio of Pd increased as the RF power increased, and the surface roughness of the thin film decreased somewhat as the RF power increased. In addition, the hardness value of the thin film increased, and the adhesive strength was improved. It was confirmed that the value of the contact angle indicating the surface energy increases as the RF power increases. It was concluded that the increase in RF power contributed to the improvement of the physical properties of Pd-doped C thin film.

12
권호별 보기
같은 권호 수록 논문
| | | | 다운로드

KCI등재

저자 : Dabin Park , Jooheon Kim

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 3호 발행 연도 : 2022 페이지 : pp. 203-214 (12 pages)

다운로드

(기관인증 필요)

초록보기

Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

KCI등재

저자 : 송승호 ( Seungho Song ) , 김지훈 ( Jeehoon Kim ) , 김영훈 ( Yong-hoon Kim )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 3호 발행 연도 : 2022 페이지 : pp. 215-222 (8 pages)

다운로드

(기관인증 필요)

초록보기

Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites

KCI등재

저자 : 조재현 ( Jae-hyeon Cho ) , 조욱 ( Wook Jo )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 3호 발행 연도 : 2022 페이지 : pp. 223-231 (9 pages)

다운로드

(기관인증 필요)

초록보기

분광학은 재료의 결정학적, 화학적 구조를 분석하기 위해 가장 보편적으로 활용되는 분석 기법이다. 이러한 기조에 따라 다양한 분석 소프트웨어와 peak fitting과 관련된 기술적 가이드라인이 보급되었지만, 정작 '왜' 중간 계산 과정을 거치고 해당 함수를 쓰는지에 대한 논의는 부족한 실정이다. 따라서 본 tutorial에서는 X선 기반 분광광도계를 통해 얻은 데이터 분석의 기초를 논하고자 한다. 이를 위해 관련된 peak fitting을 위해 필요한 실용적 배경지식을 제시하였다. 나아가, 하나의 예시로 임의로 선정한 X선 광전자 분광법 데이터에 대한 curve fitting 과정을 순서에 따라 알기 쉽게 소개하였다. 제시한 기초 이론은 특정 소프트웨어에 국한된 내용이 아니라 fitting tool이 있는 모든 소프트웨어에서 그대로 활용 가능할뿐더러 다른 분광법 데이터를 분석하는 데 적용 가능하기 때문에, 본 내용을 숙지한다면 보다 수월한 연구 진행을 위한 바탕이 될 수 있을 것이라 기대한다.

KCI등재

저자 : 차영광 ( Youngkwang Cha ) , 이일회 ( Ilhoi Lee ) , 전기범 ( Kibeom Jeon ) , 장지훈 ( Jihoon Jang ) , 주흥진 ( Heungjin Ju ) , 최승길 ( Seungkil Choi )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 3호 발행 연도 : 2022 페이지 : pp. 232-240 (9 pages)

다운로드

(기관인증 필요)

초록보기

A variable vacuum capacitor (VVC), which is a variable element, is used to match impedance in plasma that changes with various impedance values, and its use is expanding with the rapid growth of the semiconductor business. Since VVCs have to secure insulation performance and vary capacitance within a compact size, electrode design and manufacturing are very important; thus, various technologies such as part design and manufacturing technology and vacuum brazing technology are required. In this study, based on the model of an advanced foreign company that is widely used for impedance matching in the manufacture of semiconductors and displays, a VVC that can realize the same performance was developed. The electrode part was designed, the consistency was confirmed through analysis, and the precision of capacitance was improved by designing a cup-type electrode to secure the concentricity of the electrode. As a result of the evaluation, all requirements was satisfied. We believe that self-development will be possible if satisfactory responses are received through evaluation by VVC consumers in the future.

KCI등재

저자 : 이형진 ( Hyung-jin Lee ) , 강예환 ( Ye-hwan Kang ) , 정승우 ( Seung-woo Jung ) , 이건희 ( Geon-hee Lee ) , 변동욱 ( Dong-wook Byun ) , 신명철 ( Myeong-choel Shin ) , 양창헌 ( Chang-heon Yang ) , 구상모 ( Sang-mo Koo )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 3호 발행 연도 : 2022 페이지 : pp. 241-245 (5 pages)

다운로드

(기관인증 필요)

초록보기

In this study, we measured and comparatively analyzed the characteristics of MPS (Merged Pin Schottky) diodes in 4H-SiC by changing the areal ratio between the Schottky and PN junction region. Increasing the temperature from 298 K to 473 K resulted in the threshold voltage shifting from 0.8 V to 0.5 V. A wider Schottky region indicates a lower on-resistance and a faster turn-on. The effective barrier height was smaller for a wider Schottky region. Additionally, the depletion layer became smaller under the influence of the reduced effective barrier height. The wider Schottky region resulted in the ideality factor being reduced from 1.37 to 1.01, which is closer to an ideal device. The leakage saturation current increased with the widening Schottky region, resulting in a 1.38 times to 2.09 times larger leakage current.

KCI등재

저자 : 김유진 ( Yu-jin Kim ) , 박준영 ( Jun-young Park )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 3호 발행 연도 : 2022 페이지 : pp. 246-254 (9 pages)

다운로드

(기관인증 필요)

초록보기

Localized heat can be generated using electrically conductive word-lines built into a 3D NAND flash memory string. The heat anneals the gate dielectric layer and improves the endurance and retention characteristics of memory cells. However, even though the electro-thermal annealing can improve the memory operation, studies to investigate material failures resulting from electro-thermal stress have not been reported yet. In this context, this paper investigated how applying electro-thermal annealing of 3D NAND affected mechanical stability. Hot-spots, which are expected to be mechanically damaged during the electro-thermal annealing, can be determined based on understanding material characteristics such as thermal expansion, thermal conductivity, and electrical conductivity. Finally, several guidelines for improving mechanical stability are provided in terms of bias configuration as well as alternative materials.

다운로드

(기관인증 필요)

초록보기

The subthreshold swing (SS) of an asymmetric junctionless double gate (AJLDG) MOSFET is analyzed by the use of Gaussian function. In the asymmetric structure, the thickness of the top/bottom oxide film and the flat-band voltages of top gate (Vfbf) and bottom gate (Vfbb) could be made differently, so the change in the SS for these factors is analyzed with the projected range and standard projected deviation which are parameters for the Gaussian function. An analytical subthreshold swing model is presented from the Poisson's equation, and it is shown that this model is in a good agreement with the numerical model. As a result, the SS changes linearly according to the geometric mean of the top and bottom oxide film thicknesses, and if the projected range is less than half of the silicon thickness, the SS decreases as the top gate oxide film is smaller. Conversely, if the projected range is bigger than a half of the silicon thickness, the SS decreases as the bottom gate oxide film is smaller. In addition, the SS decreases as Vfbb-Vfbf increases when the projected range is near the top gate, and the SS decreases as Vfbb-Vfbf decreases when the projected range is near the bottom gate. It is necessary that one should pay attention to the selection of the top/bottom oxide thickness and the gate metal in order to reduce the SS when designing an AJLDG MOSFET.

KCI등재

저자 : 정대한 ( Dae-han Jung ) , 구자윤 ( Ja-yun Ku ) , 왕동현 ( Dong-hyun Wang ) , 손영서 ( Young-seo Son ) , 박준영 ( Jun-young Park )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 3호 발행 연도 : 2022 페이지 : pp. 264-268 (5 pages)

다운로드

(기관인증 필요)

초록보기

High pressure deuterium (HPD) annealing is an advancing technology for the fabrication of modern semiconductor devices. In this work, gate-enclosed FETs are fabricated on a silicon substrate as test vehicles. After a cycle for the HPD annealing, the device parameters such as threshold voltage (VTH), subthreshold swing (SS), on-state current (ION), off-state current (IOFF), and gate leakage (IG) were measured and compared depending on the HPD. The HPD annealing can passivate the dangling bonds at Si-SiO2 interfaces as well as eliminate the bulk trap in SiO2. It can be concluded that adding the HPD annealing as a fabrication process is very effective in improving device reliability, performance, and variability.

KCI등재

저자 : 이선우 ( Sunwoo Lee )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 3호 발행 연도 : 2022 페이지 : pp. 269-274 (6 pages)

다운로드

(기관인증 필요)

초록보기

We prepared carbon nanotube (CNT) paper by a vacuum filtration method for the use of a chip-typed resistor as a precision passive device with a constant resistance. Hybrid resistor composed of the CNT resistor with a negative temperature coefficient of resistance (T.C.R) and a metal alloy resistor with a positive T.C.R could lead to a constant resistance, because the resistance increase owing to the temperature increase at the metal alloy and decrease at the CNT could counterbalance each other. The constant resistance for the precision passive devices should be maintained even when a heat was generated by a current flow resulting in resistance change. Performance reliabilities of the CNT resistor for the precision passive device applications such as electrical load limit, environmental load limit, and life limit specified in IEC 60115-1 must be ensured. In this study, therefore, the rated power determination and T.C.R tests of the CNT paper were conducted. -900~-700 ppm/℃ of TCR, 0.1~0.2 A of the carrying current capacity, and 0.0625~0.125 W of the rated power limit were obtained from the CNT paper. Consequently, we confirmed that the application of CNT materials for the precision hybrid passive devices with a metal alloy could result in a better performance reliability with a zero tolerance.

KCI등재

저자 : 신민경 ( Minkyung Shin ) , 이선희 ( Sun Hee Lee ) , 서인태 ( Intae Seo ) , 강형원 ( Hyung-won Kang ) , 한승호 ( Seung Ho Han )

발행기관 : 한국전기전자재료학회 간행물 : 전기전자재료학회논문지(J. Korean Inst. Electr. Electron. Mater. Eng.) 35권 3호 발행 연도 : 2022 페이지 : pp. 275-280 (6 pages)

다운로드

(기관인증 필요)

초록보기

An all-solid-state electrochromic film was fabricated by laminating tungsten oxide (WO3) and nickel oxide (NiO) thin films deposited by a reactive DC magnetron sputtering on flexible ITO films. The influence of oxygen partial pressure on the crystal structure, microstructure, optical properties, and electrochromic properties of WO3 and NiO thin films were investigated. WO3 and NiO films showed the best electrochromic properties under the flow of Ar:O2=80:20 and Ar:O2=90:10, respectively. The EC film fabricated with an optimized WO3 and NiO films showed a high coloration efficiency, a fast response time, and a stable optical modulation. It is expected that flexible EC window films will pave the way for the next-generation energy-saving windows.

12

내가 찾은 최근 검색어

최근 열람 자료

맞춤 논문

보관함

내 보관함
공유한 보관함

1:1문의

닫기