The empirical Bayes linear loss two-action problem is studied. An empirical Bayes test $\delta$$_{n}$ $^{*}$ is proposed. It is shown that $\delta$$_{n}$ $^{*}$ is asymptotically optimal in the sense that its regret converges to zero at a rate $n^{-1}$ over a class of priors and the rate $n^{-1}$ is the optimal rate of convergence of empirical Bayes tests.sts.