본 논문에서는 모바일 환경에서 고립단어 음성인식을 할 경우 화자종속 방법을 이용하여 성능을 높이는 사용자 적응형 후처리 방법을 제안한다. 이 방법은 인식기의 정확한 인식 결과를 위한 추가적인 처리들로 구성된다. 즉 인식기의 출력과 정확한 최종 결과들 간의 관계를 학습하여 이를 잘못된 인식기의 출력을 수정하는 데에 사용한다. 학습에는 패턴인식에 강인한 다충 퍼셉트론을 사용하며 학습 시간을 고려하여 모델을 세분화하고 동적으로 동작할 수 있도록 구현한다. 이 결과 인식기의 오류에 대해 41%를 수정하는 성과(오류 수정률: 41%)를 보였다.