본 논문에서는 다양한 구조의 딥 뉴럴 네트워크를 소리 이벤트 검출을 위하여 적용하였으며 공통의 오디오 데이터베이스를 이용하여 그들 간의 성능을 비교하였다. FNN, CNN, RNN 그리고 CRNN이 주어진 오디오데이터베이스 및 딥 뉴럴 네트워크의 구조에 최적화된 하이퍼파라미터 값을 이용하여 구현되었다. 구현된 방식 중에서 CRNN이 모든 테스트 환경에서 가장 좋은 성능을 보였으며 그 다음으로 CNN의 성능이 우수함을 알 수 있었다. RNN은 오디오 신호에서의 시간 상관관계를 잘 추적하는 장점에도 불구하고 CNN 과 CRNN에 비해서 저조한 성능을 보임을 확인할 수 있었다.