연구목적: 국내 항만시설의 경우 사용년수가 오래된 항만구조물은 선박의 대형화 및 사용빈도 증가, 기후변화에 따른 자연재해의 영향 등으로 안전과 기능적 측면에서 상당히 많은 문제가 있다. 항만시설의 유지관리 이력 데이터를 기반으로 시설 노후화 패턴을 예측 할 수 있는 근사모델 개발을 위하여 빅데이터 분석 방법을 연구하였다. 연구방법: 본 연구에서는 케이슨식 안벽에 유지관리 데이터 수집하여 빅데이터를 바탕으로 시설물의 노후화 패턴 및 성능저하를 확인하기 위한 예측모델을 도출하였다. 가우시안 프로세스(GP)과 선형보간(SLPT) 기법을 통하여 생성된 상태기반 노후도 패턴 예측모델을 제안하고 유효성 검토를 통해 빅데이터 적용에 적합한 모델을 비교하고 제안하였다. 연구결과: 제안된 기법을 검토한 결과 SLPT기법은 RMSE 및 는 0.9215와 0.0648로 SLPT기법의 예측모델이 보다 더 적합한 것으로 검토 되었다. 결론: 이러한 연구를 통해 빅데이터 기반 시설물 성능저하 예측 연구는 유지관리를 위환 의사결정에서 중요한 체계가 될 것으로 기대된다.