닫기
216.73.216.214
216.73.216.214
close menu
KCI 등재
빅데이터 기반의 Dockless형 공유자전거 이용수요 영향요인 도출
Derivation of Factors Affecting Demand for Use of Dockless Shared Bicycles Based on Big Data
김숙희, 김형준, 신혜영, 이현경
DOI KISTI1.1003/JNL.JAKO202316543322039

본 연구에서는 수원시에 도입되었던 dockless형 공유자전거인 모바이크의 이용자 빅데이터에 대한 이용현황 및 이용특성을 분석하고, 이에 대한 다중회귀분석을 수행하여 dockless형 공유자전거 이용수요 영향요인을 규명하였다. 분석을 위해 2019년 수원시의 dockless형 공유자전거 이용 데이터를 구득하였고, 이를 동별로 정리하였다. 동별로 선정된 영향요인의 특성을 분석한 결과, 자전거 이용수요가 많은 지역 또는 인접한 지역의 자전거도로 연장이 큰 것으로 나타났고, 10-30대 인구 수가 많은 것으로 나타났다. 또한, 자전거도로 정비율이 높고 택지지구 인근의 대규모 주거시설과 상업시설이 밀집된 지역과 인접 지역을 중심으로 공유자전거 이용이 많은 것으로 분석되었다. 다중회귀분석 모델 분석 결과, 자전거 겸용도로(비분리), 동별 10-30대 인구, 철도역 수, 상업시설 수, 산업시설 수, 초·중·고 학교 수가 dockless형 공유자전거 이용수요에 미치는 영향이 유효한 것으로 확인되었다. Dockless형 공유자전거 이용수요에 영향을 미치는 요인을 파악하여 시민이 dockless형 공유자전거를 이용하고 싶어 하는 환경을 조성할 수 있을 것으로 기대된다. 또한, 연구 결과는 향후 dockless형 공유자전거 이용 활성화를 위한 정책적 자료에 기여될 것으로 사료된다.

In this research, the usage status and characteristics of user big data of Mobike, a dockless bike sharing service introduced in Suwon city, were analyzed, and multiple regression analysis was performed to identify factors influencing the demand for dockless bike sharing service. For analysis, usage data of bike sharing system in Suwon city in 2019 were obtained, and they were organized by areas. As a result of analyzing the characteristics of the influencing factors selected for each area, it was found that the extension of bicycle roads shows high in areas with high demand for bicycles or adjacent areas. Also, the population of 10-30's shows high in areas with high demand for bicycles or adjacent areas. In addition, it was analyzed that the use of bike sharing system is high in areas with high maintenance rate of bicycle roads and large-scale residential and commercial facilities near residential districts and adjacent areas. As a result of the multiple regression analysis, it is analyzed that length of bicycle·pedestrian roads (non-separated), population of 10-30's, number of railway stations, number of schools, number of commercial facilities, number of industrial facilities factors were significant. It is expected that it may be possible to create an environment in which citizens want to use dockless bike sharing service by identifying factors affecting the number of stationless shared bicycles. Also, the results of data analysis are considered to be contributing to policy data to promote the use of dockless bike sharing.

×