닫기
216.73.216.112
216.73.216.112
close menu
KCI 등재
재난문자 분류를 위한 딥러닝 모델
A Deep Learning Model for Disaster Alerts Classification
박순욱, 전혜윤, 김윤수, 이수원
DOI http://dx.doi.org/10.9708/jksci.2021.26.12.001

재난문자는 재난 발생 시 국가에서 해당 지역에 있는 시민들에게 보내는 문자 메시지다. 재난문자의 발송 건수는 점점 증가하여, 불필요한 재난문자가 많이 수신됨에 따라 재난문자를 차단하는 사람들이 증가하고 있다. 이와 같은 문제를 해결하기 위하여, 본 연구에서는 재난문자를 재난유형별로 자동으로 분류하고 수신자에 따라 필요한 재난의 재난문자만 수신하게 하는 딥러닝 모델을 제안한다. 제안 모델은 재난문자를 KoBERT를 통해 임베딩하고, LSTM을 통해 재난 유형별로 분류한다. [명사], [명사 + 형용사 + 동사], [모든 품사]의 3가지 품사 조합과 제안 모델, 키워드분류, Word2Vec + 1D-CNN 및 KoBERT + FFNN의 4종류 분류 모델을 활용하여 재난문자를 분류한 결과, 제안 모델이 0.988954의 정확도로 가장 높은 성능을 달성하였다.

Disaster alerts are text messages sent by government to people in the area in the event of a disaster. Since the number of disaster alerts has increased, the number of people who block disaster alerts is increasing as many unnecessary disaster alerts are being received. To solve this problem, this study proposes a deep learning model that automatically classifies disaster alerts by disaster type, and allows only necessary disaster alerts to be received according to the recipient. The proposed model embeds disaster alerts via KoBERT and classifies them by disaster type with LSTM. As a result of classifying disaster alerts using 3 combinations of parts of speech: [Noun], [Noun + Adjective + Verb] and [All parts], and 4 classification models: Proposed model, Keyword classification, Word2Vec + 1D-CNN and KoBERT + FFNN, the proposed model achieved the highest performance with 0.988954 accuracy.

×