In order to understand the initial interaction of the substrates malonate, ATP, and CoA with malonyl-CoA synthetase, the catalytic product malonyl-CoA was characterized by NMR spectroscopy and molecular modeling. To assign proton and carbon chemical shifts, two-dimensional 1H-IH DQF-COSY and ¹H-^(13)C HMBC experiments were used. The structure of malonyl-CoA in the solution phase was determined based on distance constraints from NOESY and ROESY spectra. The structures were well-converged around the pantetheine region with the pairwise RMSD value of 0.08 nm. The solution structure exhibited a compact folded conformation with intramolecular hydrogen bonds among its carbonyl and hydroxyl groups. These findings will help us to understand the initial interaction of malonate and CoA with malonyl-CoA synthetase.