도심 항공 모빌리티(UAM)는 도시의 교통 혼잡과 환경 문제에 혁신적인 해결책을 제공하는 새로운 교통수단으로 부상하고 있다. 특히 전기수직이착륙(eVTOL) 항공기를 통해 도심 내 이동성을 향상시키고 교통 혼잡을 감소시키며 환경오염을 줄이는 데 기여할 것으로 기대된다. 그러나 UAM 시스템의 성공적인 구현과 운영은 센서 기술과 같은 고도로 발전된 기술적 인프라에 의존을 많이 하게 된다. 이러한 센서 기술 중에서도 3D LiDAR (light detection and ranging) 시스템은 복잡한 도심 환경에서 비행체가 장애물을 감지하고 경로를 생성하는 데 필수적이다. 본 논문은 3D LiDAR를 이용한 객체 검출 기능의 중요성과 성능을 중심으로 LiDAR 기반 인지 솔루션 개발의 도전 과제에 초점을 맞추며, LiDAR 데이터 처리 알고리즘과 객체 검출 방법론을 통합하여 비행체의 안전 운항에 기여하는 인지 솔루션의 효과를 실험적으로 검증한다.
Urban air mobility (UAM) is emerging as a revolutionary transportation solution to urban congestion and environmental issues. Especially, electric vertical take-off and landing (eVTOL) aircraft are expected to enhance urban mobility, reduce traffic congestion, and decrease environmental pollution. However, the successful implementation and operation of UAM systems heavily rely on advanced technological infrastructure, particularly in sensor technology. Among these, 3D light detection and ranging (LiDAR) systems are essential for detecting obstacles and generating pathways in complex urban environments. This paper focuses on the challenges of developing LiDAR-based perception solutions, emphasizing the importance and performance of object detection capabilities using 3D LiDAR. It integrates LiDAR data processing algorithms and object detection methodologies to experimentally validate the effectiveness of perception solutions that contribute to the safe navigation of aircraft. This research significantly enhances the ability of aircraft to recognize and avoid obstacles effectively within urban settings.