본 연구는 Google Earth Engine을 활용하여 Sentinel-1 Synthetic Aperture Radar 영상을 통해 남극 Campbell Glacier Tongue (CGT)와 Drygalski Ice Tongue (DIT)의 면적 변화를 2016년부터 2024년까지 모니터링하였다. Otsu 기법과 Simple Non-Iterative Clustering (SNIC) 클러스터링 기법을 사용하여 빙설과 해양을 구분하고 월평균 영상을 통해 빙설 탐지 오류를 줄였다. 분석 결과 CGT는 주기적인 붕괴로 인하여 약 26% 감소하였고 DIT는 전반적으로 증가하다가 최근 급격한 감소를 보였다. Sentinel-2 광학 영상과 비교한 결과 높은 탐지 정확성을 보여 제안된 방법의 신뢰성을 입증하였으며, 본 연구는 남극 빙설과 빙붕의 장기모니터링에 기여할 것으로 기대된다.
This study explores the use of Sentinel-1 Synthetic Aperture Radar (SAR), processed through Google Earth Engine (GEE), to monitor changes in the areas of Antarctic ice shelves. Focusing on the Campbell Glacier Tongue (CGT) and Drygalski Ice Tongue (DIT), the research utilizes GEE’s cloud computing capabilities to handle and analyze large datasets. The study employs Otsu’s method for image binarization to distinguish ice shelves from the ocean and mitigates detection errors by averaging monthly images and extracting main regions. Results indicate that the CGT area decreased by approximately 26% from January 2016 to January 2024, primarily due to calving events, while DIT showed a slight increase overall, with notable reduction in recent years. Validation against Sentinel-2 optical images demonstrates high accuracy, underscoring the effectiveness of SAR and GEE for continuous, long-term monitoring of Antarctic ice shelves.