고령화가 심화되면서 암 발병률이 증가하고 있다. 피부 암은 외적으로 보이지만 사람들이 알아채지 못하거나 가볍게 간과하는 경우가 많다. 이에 초기 발견 시기를 놓쳐 말기의 경우 생존율이 7.5~11%로 사망에 이를 수 있다. 하지만 피부 암을 진단함에 있어 육안으로 진단하는 것이 아닌 정밀검사, 세포 검사 등 시간과 비용이 많이 든다는 단점이 있다. 따라서 본 연구에서는 이러한 단점을 해결하기 위해 Attention CNN 모델 기반 피부암 분류 시스템을 제안한다. 이 시스템은 전문의로 하여금 피부 암을 초기에 발견하여 신속한 조치를 취할 수 있도록 하는데 큰 도움을 줄 수 있다. 피부암 종류에 따른 이미지 데이터 불균형 문제에서 분포 비율이 낮은 데이터에는 Over Sampling 기법을, 분포 비율이 높은 데이터에는 Under Sampling 기법을 적용하여 완화하고 Attention layer가 없는 모델과 있는 모델을 비교하여 Attention layer가 없는 사전학습 모델에 추가한 피부암 분류 모델을 제안한다. 또한, 특정 클래스에 대하여 데이터 증강 기법을 강화하여 데이터 불균형 문제를 해결할 계획이다.
As the aging population grows, the incidence of cancer is increasing. Skin cancer appears externally, but people often don’t notice it or simply overlook it. As a result, if the early detection period is missed, the survival rate in the case of late stage cancer is only 7.5-11%. However, the disadvantage of diagnosing, serious skin cancer is that it requires a lot of time and money, such as a detailed examination and cell tests, rather than simple visual diagnosis. To overcome these challenges, we propose an Attention-based CNN model skin cancer classification system. If skin cancer can be detected early, it can be treated quickly, and the proposed system can greatly help the work of a specialist. To mitigate the problem of image data imbalance according to skin cancer type, this skin cancer classification model applies the Over Sampling, technique to data with a high distribution ratio, and adds a pre-learning model without an Attention layer. This model is then compared to the model without the Attention layer. We also plan to solve the data imbalance problem by strengthening data augmentation techniques for specific classes.