본 연구는 대표적인 생성형 AI 기술인 ChatGPT의 이용자 신뢰를 중심으로 이용실태와 지속사용의도에 영향을 미치는 요인, 그리고 신뢰의 영향력이 목적에 따라 달라지는지를 탐색적으로 살펴보았다. 이를 위해 ChatGPT를 많이 이용하는 20대와 30대를 대상으로 설문조사를 실시하였으며 통계 패키지 프로그램인 IBM SPSS 27과 SmartPLS 4.0을 적용하여 분석을 수행하였다. Bhattacherjee의 기대 충족모델(ECM)을 기반으로 구조방정식 모델을 구축하고, 경로분석과 다중그룹분석(MGA)를 실시하여 가설을 검증하였다. 본 연구의 결과는, 첫째, ChatGPT 이용자들은 일상적인 도구로 사용하기보다 특정 목적이나 필요에 따라 사용하고 있으며, 대부분의 사용자가 ChatGPT의 환각효과(Hallucination)에 대해 인지하고 있으나 이는 사용을 저해하는 요인은 아니었다. 둘째, 가설검정 결과 독립변수인 기대충족, 인지된 유용성, 사용자 만족 요인 모두가 종속변수인 지속이용의도에 긍정적 영향을 미치고 있음을 확인하였다. 셋째, 이용자가 ChatGPT를 이용하는 목적에 따라 신뢰의 영향력이 달라짐이 확인되었다. 이용자가 정보 검색 목적으로 ChatGPT를 활용하는 경우에는 신뢰가 사용자 만족에 영향을 미친 반면, 창작 목적으로 사용하는 경우 영향을 미치지 않는 것으로 나타났다. 본 연구의 결과가 향후 사회와 기업에 있어 생성형 AI의 도입 과정에서 신뢰성의 문제를 해결하고 성공적인 도입을 위한 정책 수립 및 개선방안 도출을 위해 활용될 수 있기를 기대한다.
This study focused on user trust in ChatGPT, a generative AI technology, and explored the factors that affect usage status and intention to continue using, and whether the influence of trust varies depending on the purpose. For this purpose, the survey was conducted targeting people in their 20s and 30s who use ChatGPT the most. The statistical analysis deploying IBM SPSS 27 and SmartPLS 4.0. A structural equation model was formulated on the foundation of Bhattacherjee’s Expectation-Confirmation Model (ECM), employing path analysis and Multi-Group Analysis (MGA) for hypothesis validation. The main findings are as follows: Firstly, ChatGPT is mainly used for specific needs or objectives rather than as a daily tool. The majority of users are cognizant of its hallucination effects; however, this did not hinder its use. Secondly, the hypothesis testing indicated that independent variables such as expectation-confirmation, perceived usefulness, and user satisfaction all exert a positive influence on the dependent variable, the intention for continuance intention. Thirdly, the influence of trust varied depending on the user’s purpose in utilizing ChatGPT. trust was significant when ChatGPT is used for information retrieval but not for creative purposes. This study will be used to solve reliability problems in the process of introducing generative AI in society and companies in the future and to establish policies and derive improvement measures for successful employment.