As complementary metal-oxide semiconductor (CMOS) is scaled down to achieve higher chip density, thin-film layers have been deposited iteratively. The poor film uniformity resulting from deposition or chemical mechanical planarization (CMP) significantly affects chip yield. Therefore, the development of novel fabrication processes to enhance film uniformity is required. In this context, high-pressure deuterium annealing (HPDA) is proposed to reduce the surface roughness resulting from the CMP. The HPDA is carried out in a diluted deuterium atmosphere to achieve cost-effectiveness while maintaining high pressure. To confirm the effectiveness of HPDA, time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM) are employed. It is confirmed that the absorbed deuterium gas facilitates the diffusion of silicon atoms, thereby reducing surface roughness.