The recent scholarly focus has been directed towards the expeditious and accurate detection of salient objects, a task that poses considerable challenges for resource-limited edge devices due to the high computational demands of existing models. To mitigate this issue, some contemporary research has favored inference speed at the expense of accuracy. In an effort to reconcile the intrinsic trade-off between accuracy and computational efficiency, we present novel model for salient object detection. Our model incorporate group-wise attentive module within the decoder of the encoder-decoder framework, with the aim of minimizing computational overhead while preserving detection accuracy. Additionally, the proposed architectural design employs attention mechanisms to generate boundary information and semantic features pertinent to the salient objects. Through various experimentation across five distinct datasets, we have empirically substantiated that our proposed models achieve performance metrics comparable to those of computationally intensive state-of-the-art models, yet with a marked reduction in computational complexity.