닫기
216.73.216.29
216.73.216.29
close menu
KCI 등재
A FORMAL DERIVATION ON INTEGRAL GROUP RINGS FOR CYCLIC GROUPS
( Joongul Lee )
UCI I410-ECN-151-24-02-089049510
이 자료는 4페이지 이하의 자료입니다.

Let G be a cyclic group of prime power order pk, and let I be the augmentation ideal of the integral group ring Z[G]. We define a derivation on Z/pkZ[G], and show that for 2 ≤ n ≤ p, an element α ∈ I is in In if and only if the i-th derivative of the image of α in Z/pkZ[G] vanishes for 1 ≤ i ≤ (n - 1).

1. Introduction
2. Reduction modulo p<sup>k</sup>
3. Derivation on A[G]
References
[자료제공 : 네이버학술정보]
×