18.97.9.171
18.97.9.171
close menu
Accredited SCOPUS
머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정
Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors
박소련 ( Soryeon Park ) , 손상훈 ( Sanghun Son ) , 배재구 ( Jaegu Bae ) , 이도이 ( Doi Lee ) , 서동주 ( Dongju Seo ) , 김진수 ( Jinsoo Kim )
UCI I410-ECN-151-24-02-088969380

전 세계적으로 녹조 대발생은 빈번하게 보고되고 있으며, 국내에서도 매년 녹조로 인한 심각한 수질 오염 문제가 발생하고 있다. 지속적인 관리와 신속한 대응을 통한 수생태계 보호가 필요하다. 녹조 발생의 지표인 chlorophyll-a (Chl-a) 농도를 예측하기 위해 위성 영상을 이용한 연구가 많이 이루어지고 있다. 하지만 수계에 따라 변하는 분광특성과 대기 보정 오류로 인해 정확한 Chl-a 산출에 어려움이 있어 최근 머신러닝 모델을 활용하고 있다. 위성 분광지수 뿐만 아니라 녹조에 영향을 미치는 인자들에 대한 복합적인 고려가 필요하다. 따라서, 본 연구는 수질, 수문 및 기상 인자와 Sentinel-2 영상을 복합적으로 고려하여 데이터셋을 구축하였다. 최근 5년간 낙동강에 위치한 8개 보 구간의 Chl-a 농도 예측에 대표적인 앙상블 모델 random forest (RF)와 extreme gradient boosting (XGBoost)을 활용하였다. 모델 평가 지표로 r-squared score (R2), root mean square errors (RMSE), mean absolute errors (MAE)를 사용하였으며, XGBoost의 R2가 0.810, RMSE가 6.612, MAE가 4.457로 유의미한 결과를 얻은 것을 확인하였다. Shapley additive explanations (SHAP) 분석을 통해 두 모델 모두 수질 인자 suspended solids (SS), biochemical oxygen demand (BOD), dissolved oxygen (DO)과 red edge 밴드를 활용한 밴드비가 높은 중요도를 보인 것을 알 수 있었다. 다양한 입력 데이터는 모델 성능 향상에 도움을 주는 것을 확인할 수 있었으며, 국내외 녹조 탐지에 적용될 수 있을 것으로 보인다.

Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.

1. 서론
2. 연구자료 및 방법
3. 연구결과 및 토의
4. 결론
사사
Conflict of Interest
References
[자료제공 : 네이버학술정보]
×