닫기
216.73.216.138
216.73.216.138
close menu
KCI 등재
군·시도 수준에서의 작물 수확량 추정: 옥수수와 콩에 대한 근적외선 반사율 지수(NIRv) 최댓값의 잠재력 해석
Unveiling the Potential: Exploring NIRv Peak as an Accurate Estimator of Crop Yield at the County Level
김대원 ( Daewon Kim ) , 권령섭 ( Ryoungseob Kwon )
UCI I410-ECN-151-24-02-088948578

작물 수확량의 정확하고 시기 적절한 추정은 세계적인 식량 안보 계획 및 농업 정책 개발을 포함하여 다양한 목적을 위해 중요하다. 원격 감지 기술은 특히 vegetation indices (VIs)를 활용한 작물 상태 모니터링과 예측에서 유망성을 보여주고 있다. 그러나 normalized difference vegetation index (NDVI) 와 enhanced vegetation index (EVI) 와 같은 전통적인 Vis는 식물광합성의 빠른 변화를 포착하는 데 제한이 있으며 작물 생산성을 정확하게 대표하지 못할 수 있다. 대체적인 Vis인 near-infrared reflectance of vegetation (NIRv)는 gross primary productivity (GPP)과 강한 상관관계를 가지며 빛이 반사할 때의 혼동을 해결하는 능력으로 인해 작물 생산량을 예측하는 더 나은 지표로 제안되었다. 연구 결과는 옥수수와 콩 모두에 대해 NIRv의 최댓값과 작물 수확량/면적 간에 유의한 상관 관계가 있음을 입증했다. 이 상관관계는 콩에 대해 약간 더 강한 경향을 보였다. 게다가 대부분의 주요한 주에서는 NIRv의 최댓값과 생산량 간에 주목할 만한 관계가 있으며, 다양한 주에서 일관된 경사도를 보였다. 또한, 연간 데이터에서는 대부분의 값이 서로 밀접하게 군집되는 독특한 패턴을 관찰했다. 그러나 2012년은 다양한 주에서 독특한 작물 조건을 시사하는 이상값으로 나타났다. NIRv의 최댓값과 생산량 간의 확립된 관계를 기반으로, 우리는 2022년의 작물 수확량 데이터를 예측하고, 예측의 정확도를 Root Mean Square Percentage Error (RMSPE)를 사용하여 평가했다. 우리의 연구 결과는 지역별 작물 수확량 추정에 NIRv의 최댓값과 잠재력을 나타내며, 다양한 지역에서 정확도는 달라질 수 있다는 것을 보여줄 수 있다.

Accurate and timely estimation of crop yields is crucial for various purposes, including global food security planning and agricultural policy development. Remote sensing techniques, particularly u sing vegetation indices (VIs), have shown promise in monitoring and predicting crop conditions. However, traditional VIs such as the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) have limitations in capturing rapid changes in vegetation photosynthesis and may not accurately represent crop productivity. An alternative vegetation index, the near-infrared reflectance of vegetation (NIRv), has been proposed as a better predictor of crop yield due to its strong correlation with gross primary productivity (GPP) and its ability to untangle confounding effects in canopies. In this study, we investigated the potential of NIRv in estimating crop yield, specifically for corn and soybean crops in major crop-producing regions in 14 states of the United States. Our results demonstrated a significant correlation between the peak value of NIRv and crop yield/area for both corn and soybean. The correlation was slightly stronger for soybean than for corn. Moreover, most of the target states exhibited a notable relationship between NIRv peak and yield, with consistent slopes across different states. Furthermore, we observed a distinct pattern in the yearly data, where most values were closely clustered together. However, the year 2012 stood out as an outlier in several states, suggesting unique crop conditions during that period. Based on the established relationships between NIRv peak and yield, we predicted crop yield data for 2022 and evaluated the accuracy of the predictions using the Root Mean Square Percentage Error (RMSPE). Our findings indicate the potential of NIRv peak in estimating crop yield at the county level, with varying accuracy across different counties.

Ⅰ. Introduction
Ⅱ. Materials and Methods
Ⅲ. Results
Ⅳ. Discussion and Conclusion
Acknowledgement
REFERENCES
[자료제공 : 네이버학술정보]
×