18.97.14.81
18.97.14.81
close menu
Accredited
불규칙한 빠짐을 포함한 탄성파 탐사 자료의 머신러닝을 이용한 트레이스 기반 내삽
Trace-based Interpolation Using Machine Learning for Irregularly Missing Seismic Data
이재우 ( Zeu Yeeh ) , 박지호 ( Jiho Park ) , 설순지 ( Soon Jee Seol ) , 윤대웅 ( Daeung Yoon ) , 변중무 ( Joongmoo Byun )
UCI I410-ECN-151-24-02-088703515

최근에 활발히 적용되고 있는 머신러닝 기반 탄성파 내삽 기법들은 대부분 모음 자료를 2차원 영상화 하여 빠짐을 채우는 방법으로 하는 훈련(training)-추론(inference) 전략에 기초하므로 완벽히 채워진 다수의 모음자료가 훈련을 위해 필요하게 된다. 이 연구는 이와는 달리 트레이스 기반 내삽을 수행하는 내삽 기술의 훈련-추론 전략을 기본으로, 불규칙한 빠짐이 있는 현장자료 만을 이용하여 훈련-추론을 모두 수행할 수 있는 머신러닝을 이용한 트레이스 기반 불규칙한 빠짐의 내삽 기술을 제시하였다. 이 연구에서는 불규칙한 빠짐이 있는 자료를 훈련과 추론에 체계적으로 사용하는 최대 연속빠짐 간격에 따라 정해지는 네트워크를 구성하는 방법 및 훈련하는 방법을 기술하였다. 또한, 서호주 Exmouth Sub-basin 지역의 Vincent 유전에서 얻어진 시간 참반사 보정된 탄성파 자료에 개발된 방법을 적용한 후, 예측결과를 전통적인 내삽 방법의 결과와 비교 및 분석하였다. 신호대잡음비나 구조유사성과 같은 정량적인 지표를 통해 두 방법 모두 내삽 성능이 높은 것을 확인하였으며, 모든 주파수 대역에서도 골고루 좋은 결과를 보임을 확인하였다.

Recently, machine learning (ML) techniques have been actively applied for seismic trace interpolation. However, because most research is based on training-inference strategies that treat missing trace gather data as a 2D image with a blank area, a sufficient number of fully sampled data are required for training. This study proposes trace interpolation using ML, which uses only irregularly sampled field data, both in training and inference, by modifying the training-inference strategies of trace-based interpolation techniques. In this study, we describe a method for constructing networks that vary depending on the maximum number of consecutive gaps in seismic field data and the training method. To verify the applicability of the proposed method to field data, we applied our method to time-migrated seismic data acquired from the Vincent oilfield in the Exmouth Sub-basin area of Western Australia and compared the results with those of the conventional trace interpolation method. Both methods showed high interpolation performance, as confirmed by quantitative indicators, and the interpolation performance was uniformly good at all frequencies.

서 론
네트워크 훈련-추론 전략
현장자료 적용사례
모델 제약조건이 적용된 MWNI방법과의 성능 비교
결론 및 토의
감사의 글
References
[자료제공 : 네이버학술정보]
×