최근 수산 자원의 고갈에 따른 육상 양식장에서의 ‘기르는 어업‘에 의한 생산성 향상에 대한 기대가 크게 고조되고 있다. 육상 양식장의 경우, 해상 환경과 달리 환경 및 양성 요소에 대한 제어와 관리가 용이하며, 출하 계획에 따른 생산량 조정이 가능한 이점이 있다. 반면, 자연 환경에서와 달리 어류 성장을 위한 인위적인 관리가 필요하기 때문에 운영에 따른 비용이 크게 증가할 수 있는 단점이 있다. 따라서, 계획된 목표 출하량에 맞추어 효율적으로 양식장을 운영함으로써 이윤 극대화를 추구할 수 있다. 이러한 효율적인 양식장 운영 및 어류 양성을 위해서는 대상 어종에 따른 정확한 성장 예측 모델이 반드시 요구된다. 현재까지 대부분의 성장예측 모델은 양식장 수집 데이터를 활용하여 통계적 분석 기반의 수치 해석적인 결과들이 주를 이룬다. 본 논문에서는 기존의 통계적 관점에 의한 성장 예측 모델이 가질 수 있는 데이터 확보의 어려움 및 낮은 정확도에 대한 정량적 수치를 제공하기 어려운 단점을 극복하기 위해 확률적 관점에서의 성장 예측 모델을 제시한다. 확률적 접근을 위하여 양성에 가장 중요한 요소인 수온을 기반으로 한 가우시안 프로세스 회귀 방식을 도입하여 모델링을 수행한다. 이를 통해, 특정 시점에서의 성장 예측값에 대한 평균치와 해당 값에 대한 신뢰구간을 동시에 제공함으로써 보다 효율적인 양식장 운영을 위한 참고 수치를 제공할 수 있을 것으로 기대한다.
Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.