지구온난화로 인해 발생한 기온 상승은 엘니뇨, 라니냐 현상을 초래하였고, 해수의 온도를 비정상적으로 변화시켰다. 해수 온도의 비정상적인 변화는 특정 지역에 강우가 집중되는 현상을 발생시켜 이상 홍수를 빈번하게 일으킨다. 홍수로 인한 인명 및 재산 피해를 복구하고 방지하기 위해서는 침수피해 지역을 신속하게 파악하는 것이 중요한데 이는 합성개구레이더(synthetic aperture radar, SAR)를 통해 가능하다. 본 연구에서는 멀티 커널(kernel) 기반의 수정된 U-NET과 TerraSAR-X 영상을 활용하여 다양한 특성 맵 추출을 통해 반전 잡음(speckle noise)의 효과를 저감하고, 홍수 전, 후의 두 장의 영상을 입력자료로 활용해 홍수 발생 지역을 직접적으로 도출해내는 모델을 제작하고자 한다. 이를 위해 두 장의 SAR 영상을 전처리하여 모델의 입력자료를 제작하였고, 이를 수정된 U-NET 구조에 적용하여 홍수 탐지 딥러닝 모델을 학습시켰다. 해당 방법을 통해 평균 F1 score 값이 0.966으로 높은 수준으로 홍수 발생 지역을 탐지할 수 있었다. 이 결과는 수해 지역에 대한 신속한 복구 및 수해 예방책 도출에 기여할 것으로 기대된다.
The rise in temperature induced by global warming caused in El Nino and La Nina, and abnormally changed the temperature of seawater. Rainfall concentrates in some locations due to abnormal variations in seawater temperature, causing frequent abnormal floods. It is important to rapidly detect flooded regions to recover and prevent human and property damage caused by floods. This is possible with synthetic aperture radar. This study aims to generate a model that directly derives flood-damaged areas by using modified U-NET and TerraSAR-X images based on Multi Kernel to reduce the effect of speckle noise through various characteristic map extraction and using two images before and after flooding as input data. To that purpose, two synthetic aperture radar (SAR) images were preprocessed to generate the model’s input data, which was then applied to the modified U-NET structure to train the flood detection deep learning model. Through this method, the flood area could be detected at a high level with an average F1 score value of 0.966. This result is expected to contribute to the rapid recovery of flood-stricken areas and the derivation of flood-prevention measures.