지구 온난화의 중요한 지시자인 북극의 바다 얼음인 해빙은 기후 시스템, 선박의 항로 안내, 어업 활동 등에서의 중요성으로 인해 다양한 학문 분야에서 관심을 받고 있다. 최근 자동화와 효율적인 미래 예측에 대한 요구가 커지면서 인공지능을 이용한 새로운 해빙 예측 모델들이 전통적인 수치 및 통계 예측 모델을 대체하기 위해 개발되고 있다. 본 연구에서는 북극 해빙의 전역적, 지역적 특징을 학습할 수 있는 two-stream convolutional long- and short-term memory (TS-ConvLSTM) 인공지능 모델의 북극 해빙 면적이 최저를 보이는 9월에 대해 2001년부터 2021년까지 장기적인 성능 검증을 통해 향후 운용 가능한 시스템으로써의 가능성을 살펴보고자 한다. 장기 자료를 통한 검증 결과 TS-ConvLSTM 모델이 훈련자료의 양이 증가하면서 향상된 예측 성능을 보여주고 있지만, 최근 지구 온난화로 인한 단년생 해빙의 감소로 인해 해빙 농도 5-50% 구간에서는 예측력이 저하되고 있음을 보여주었다. 반면 TS-ConvLSTM에 의해 예측된 해빙 면적과 달리 Sea Ice Prediction Network에 제출된 Sea Ice Outlook (SIO)들의 해빙 면적 중간값의 경우 훈련자료가 늘어나더라도 눈에 띄는 향상을 보이지 않았다. 본 연구를 통해 TS-ConvLSTM 모델의 향후 북극 해빙 예측 시스템의 운용 가능 잠재성을 확인하였으나, 향후 연구에서는 예측이 어려운 자연 환경에서 더욱 안정성 있는 예측 시스템 개발을 위해 더 많은 시공간 변화 패턴을 학습할 수 있는 방안을 고려해야 할 것이다.
Sea ice, frozen sea water, in the Artic is a primary indicator of global warming. Due to its importance to the climate system, shipping-route navigation, and fisheries, Arctic sea ice prediction has gained increased attention in various disciplines. Recent advances in artificial intelligence (AI), motivated by a desire to develop more autonomous and efficient future predictions, have led to the development of new sea ice prediction models as alternatives to conventional numerical and statistical prediction models. This study aims to evaluate the performance of the two-stream convolutional longand short-term memory (TS-ConvLSTM) AI model, which is designed for learning both global and local characteristics of the Arctic sea ice changes, for the minimum September Arctic sea ice from 2001 to 2021, and to show the possibility for an operational prediction system. Although the TSConvLSTM model generally increased the prediction performance as training data increased, predictability for the marginal ice zone, 5-50% concentration, showed a negative trend due to increasing first-year sea ice and warming. Additionally, a comparison of sea ice extent predicted by the TS-ConvLSTM with the median Sea Ice Outlooks (SIOs) submitted to the Sea Ice Prediction Network has been carried out. Unlike the TS-ConvLSTM, the median SIOs did not show notable improvements as time passed (i.e., the amount of training data increased). Although the TSConvLSTM model has shown the potential for the operational sea ice prediction system, learning more spatio-temporal patterns in the difficult-to-predict natural environment for the robust prediction system should be considered in future work.