4차 산업혁명 시대를 맞아 우리는 정보의 홍수 속에 살고 있다. 이런 환경에서 우리에게 필요한 정보를 찾기란 매우 어렵고 복잡하다. 따라서 정보의 홍수 속에서 추천 시스템은 필수적이다. 이러한 추천 시스템 중 영화, 음악, 음식, 의류의 각각에 대한 추천 시스템들은 많은 연구가 진행되어 왔다. 현재까지 대부분의 개인화 추천 시스템들은 개인의 성향인 나이, 장르, 지역, 성별 등을 체크해서 옷들을 추천한다던가, 책들을 추천한다던가, 영화들을 추천해왔다. 미래 세대에서는 나이, 장르, 지역, 성별 등을 체크해서 옷, 책, 영화들을 한꺼번에 추천 받기를 원할 것이다. 본 논문에서는 사용자의 감정과 날씨에 따라 개인 맞춤형 옷과 음식을 한꺼번에 추천하는 추천 시스템을 제안한다. 소셜미디어인 트위터에서 사용자의 데이터를 얻었고, 트윗을 기반으로 감정 분석을 해서 Paul Eckman 이론에 따라 사람의 6 가지의 기본 감정으로 분류했다. 이렇게 얻어진 기본 감정을 Hayashi의 Quantification Method III를 적용하여 색깔로 변환하였으며, 이러한 색깔은 추천하는 옷의 색상으로 표현하였다. 또한, visualcrossing.com API의 날씨 정보를 이용하여 의류의 종류를 추천한다. 그리고 감정에 따른 컴포트 푸드의 내용에 따라 다양한 음식을 추천한다.
In the era of the 4th industrial revolution, we are living in a flood of information. It is very difficult and complicated to find the information people need in such an environment. Therefore, in the flood of information, a recommendation system is essential. Among these recommendation systems, many studies have been conducted on each recommendation system for movies, music, food, and clothes. To date, most personalized recommendation systems have recommended clothes, books, or movies by checking individual tendencies such as age, genre, region, and gender. Future generations will want to be recommended clothes, books, and movies at once by checking age, genre, region, and gender. In this paper, we propose a recommendation system that recommends personalized clothes and food at once according to the user's emotions and weather. We obtained user data from Twitter of social media and analyzed this data as user's basic emotion according to Paul Eckman’s theory. The basic emotions obtained in this way were converted into colors by applying Hayashi's Quantification Method III, and these colors were expressed as recommended clothes colors. Also, the type of clothing is recommended using the weather information of the visualcrossing.com API. In addition, various foods are recommended according to the contents of comfort food according to emotions.