최근 딥러닝의 기술발전으로 자연어 처리 분야에서 Q&A, 문장추천, 개체명 인식 등 다양한 연구가 진행 되고 있다. 딥러닝 기반 자연어 처리에서 좋은 성능을 보이는 트랜스포머 기반 BERT 모델의 성능향상에 대한 다양한 연구도 함께 진행되고 있다. 본 논문에서는 토픽모델인 잠재 디리클레 할당을 이용한 토픽별 지식그래프 분류와 입력문장의 토픽을 추론하는 방법으로 K-BERT 모델을 학습한다. 분류된 토픽 지식그래프와 추론된 토픽을 이용해 K-BERT 모델에서 대용량 지식그래프 사용의 효율적 방법을 제안한다.