닫기
216.73.216.142
216.73.216.142
close menu
KCI 등재
방한 관광객의 온라인 리뷰에 대한 빅데이터 분석 기반의 감성분석 및 평점 예측모형
Sentiment Analysis and Star Rating Prediction Based on Big Data Analysis of Online Reviews of Foreign Tourists Visiting Korea
홍태호 ( Taeho Hong )
지식경영연구 23권 1호 187-201(15pages)
UCI I410-ECN-0102-2023-300-000498005

관광객이 작성한 온라인 리뷰는 관광산업의 관리 및 운영에 중요한 정보를 제공한다. 평점은 제품이나 서비스에 대한 정량적인 평가로 간편하지만 관광객의 진실한 태도를 반영하기 어려우며 평점과 리뷰내용에 대한 불일치 문제도 발생하고 있다. 불일치 문제는 잠재고객에게 혼동을 줄 수 있으며 구매의사결정에도 영향을 미칠 수 있다. 본 연구에서는 온라인 리뷰기반의 평점 예측모형을 통해 평점과 리뷰내용의 불일치 문제를 해결하고자 한다. 한국을 방문한 외국인 관광객이 작성한 관광지와 호텔에 대한 리뷰의 감성분석을 통해 평점과 감성의 차이를 비교하고 TF-IDF vectorization과 감성분석 결과로 변수를 선정하였다. 로짓, 인공신경망, SVM(Support Vector Machine)을 적용하여 평점을 분류하고, 인공신경망, SVR(Support Vector Regression)을 통해 평점을 예측하였다. 평점 분류모형과 예측모형 모두 불일치한 리뷰를 제거하고 감성분석을 반영한 모형에서 우수한 성과를 보여주었다. 본 연구에서 제안한 온라인 리뷰 기반의 평점 예측모형은 평점과 리뷰내용에 대한 불일치 문제를 해결하여 신뢰할 수 있는 정보를 제공하였으며 평점이 없는 온라인 리뷰에도 활용할 수 있을 것이다.

Online reviews written by tourists provide important information for the management and operation of the tourism industry. The star rating of online reviews is a simple quantitative evaluation of a product or service, but it is difficult to reflect the sincere attitude of tourists. There is also an issue; the star rating and review content are not matched. In this study, a star rating prediction model based on online review content was proposed to solve the discrepancy problem. We compared the differences in star ratings and sentiment by continent through sentiment analysis on tourist attractions and hotels written by foreign tourists who visited Korea. Variables were selected through TF-IDF vectorization and sentiment analysis results. Logit, artificial neural network, and SVM(Support Vector Machine) were used for the classification model, and artificial neural network and SVR(Support Vector regression) were applied for the rating prediction model. The online review rating prediction model proposed in this study could solve inconsistency problems and also could be applied even if when there is no star rating.

1. 서론
2. 이론적 배경
3. 연구 프레임워크
4. 분석결과
5. 결론
<참고문헌>
[자료제공 : 네이버학술정보]
×