닫기
216.73.216.29
216.73.216.29
close menu
KCI 등재
딥러닝 기반 임상 관계 학습을 통한 질병 예측
Disease Prediction By Learning Clinical Concept Relations
조승현 ( Seung-hyeon Jo ) , 이경순 ( Kyung-soon Lee )
UCI I410-ECN-0102-2022-500-001030274

본 논문에서는 임상 의사 결정 지원을 위하여 의학 지식을 통해 임상 관계를 추출하고 딥러닝 모델을 이용하여 질병을 예측하는 방법을 제안한다. 의학 사전인 UMLS(Unified Medical Language System)와 암 관련 의학 지식에 포함된 임상 용어를 5가지로 분류한다. 분류된 임상 용어들을 사용하여 위키피디아 의학 문서를 추출한다. 추출한 위키피디아 의학 문서와 추출한 임상 용어를 매칭하여 임상 관계를 구축한다. 구축한 임상 관계를 이용하여 딥러닝 학습을 진행한 후 질의에서 표현된 의학 용어를 바탕으로 질의와 연관된 질병을 예측한다. 이후, 예측한 질병과 관계가 있는 의학 용어를 확장 질의로 선택한 뒤 질의를 확장한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS), TREC Precision Medicine(PM) 테스트 컬렉션에 대해 비교 평가한다.

In this paper, we propose a method of constructing clinical knowledge with clinical concept relations and predicting diseases based on a deep learning model to support clinical decision-making. Clinical terms in UMLS(Unified Medical Language System) and cancer-related medical knowledge are classified into five categories. Medical related documents in Wikipedia are extracted using the classified clinical terms. Clinical concept relations are established by matching the extracted medical related documents with the extracted clinical terms. After deep learning using clinical knowledge, a disease is predicted based on medical terms expressed in a query. Thereafter, medical terms related to the predicted disease are selected as an extended query for clinical document retrieval. To validate our method, we have experimented on TREC Clinical Decision Support (CDS) and TREC Precision Medicine (PM) test collections.

1. 서 론
2. 관련 연구
3. 임상 관계 구축
4. 딥러닝 기반 질병 예측 및 질의 확장
5. 실험 및 평가
6. 결 론
References
[자료제공 : 네이버학술정보]
×