닫기
216.73.216.214
216.73.216.214
close menu
KCI 후보
MLP를 이용한 공컨테이너 수요예측
Demand Forecast For Empty Containers Using MLP
김동윤 ( Dongyun Kim ) , 방선호 ( Sunho Bang ) , 장지영 ( Jiyoung Jang ) , 신광섭 ( Kwangsup Shin )
UCI I410-ECN-0102-2022-500-000954493

COVID-19의 대유행은 컨테이너를 사용하는 국가 간 수출입 물동량 불균형을 더욱 악화시켰으며, 이는 공컨테이너 수급의 문제까지 이어지게 되었다. 적정 수요만큼의 공컨테이너 확보는 안정적이고 효율적인 항만 운영을 위해 필수적인 요소이다. 지금까지 여러 기법을 사용한 공컨테이너 수요예측 방안이 연구되어 왔다. 그러나 항만 및 선사에서 직접 활용 가능한 수요예측 보다는 월 혹은 연 단위의 장기적인 예측에 머루르고 있었다. 본 연구에서는 실제 인공신경망을 이용한 일별, 주별 단위 예측 방안을 제시한다. 이를 위해 머신러닝 기법 중 다층 퍼셉트론과 회귀분석을 활용하여 수요예측을 진행하였으며, 데이터 부족 문제를 해결하기 위해 적컨테이너와 공컨테이너의 입항 후 다시 항만으로 유입되는 과정을 기반으로 데이터를 재가공하였다. 이를 통해, 정확도가 매우 높지는 않지만, 현장에서는 활용 가능한 일별 및 주별 수요 예측 모델을 개발할 수 있었다.

The pandemic of COVID-19 further promoted the imbalance in the volume of imports and exports among countries using containers, which worsened the shortage of empty containers. Since it is important to secure as many empty containers as the appropriate demand for stable and efficient port operation, measures to predict demand for empty containers using various techniques have been studied so far. However, it was based on long-term forecasts on a monthly or annual basis rather than demand forecasts that could be used directly by ports and shipping companies. In this study, a daily and weekly prediction method using an actual artificial neural network is presented. In details, the demand forecasting model has been developed using multi-layer perceptron and multiple linear regression model. In order to overcome the limitation from the lack of data, it was manipulated considering the business process between the loaded container and empty container, which the fully-loaded container is converted to the empty container. From the result of numerical experiment, it has been developed the practically applicable forecasting model, even though it could not show the perfect accuracy.

Ⅰ. 서론
Ⅱ. 기존 연구
Ⅲ. 데이터 분석
Ⅳ. 제안 방법론 및 실험 결과 분석
Ⅴ. 결론
참 고 문 헌
[자료제공 : 네이버학술정보]
×